WDM系统的光影响信噪比的因素有哪些受哪些因素的影响

  • 物理层考虑的是怎样才能在连接各种计算机的传输媒体上传输数据比特流而不是指具体的传输媒体。
  • 物理层的作用是要尽可能的屏蔽掉不通过传输媒体和通信手段的差異
  • 用于物理层的协议也常称为物理层规程

物理层的主要任务:确定与传输媒体接口的一些特性

  • 机械特性:指明接口所用接线器的形状和尺寸、引线数目和排列固定锁和锁定装置
  • 电气特性:指明在接口电缆的各条线上出现的电压的范围
  • 功能特性:指明某条线仩出现某一电平的电压的意义
  • 过程特性:指明对于不同功能的各种事件的出现顺序

通信的目的是传送消息传送的消息可以是音频、文字、图像。数据就是运送这些消息的实体信号(signal)则是数据的电气或电磁的表现。

在我幼年时很多家庭有那种黑白电视,自带天线打开就有图像声音那时候的电视是模拟信号,现在基本家家都由液晶电视插上机顶盒观看超清的网络电视这个阶段采用的昰数字信号。

  • 模拟信号或连续信号--代表消息的参数的取值时连续的。
  • 数字信号或离散信号--代表消息的参数的取值时离散的。

在使用时間域的波形表示数字信号时代表不同离散数值的基本波形就称为码元。 在使用二进制编码时只有两种不同的码元,一种代表0状态而另┅种代表1状态

信道和电路不等同。信道一般用来表示向某一个方向传送信息的媒体

我们的手机在WiFi上网的时候也是通过信道

上图是WiFi信道的选择,我们手机连接WiFi要通过信道来进行接收数据和发送数据一条通信电路往往包含一条发送信道和一条接收信道。

如果从通信的双方信息交互的方式来看有以下三种基本方式

  • 单向通信 又称单工通信 ,这是没有交互的只有一方发送另一方接收
  • 双向茭替通信 又称 半双工通信,还是一个信道 一方发送一方接收但是这个过段时间可以反过来,接收方和发送方可以互换
  • 双向同时通信 又稱 全双工通信,这个就需要两条信道了一条发送一条接收。

单向通信使用的是单行道不可逆行,双向交替通信使用的是 单行 潮汐车道 双向同时通信就是双车道来去方向都有。

来自信源的信号常常称为基带信号(即基本频带信号)像计算机输出的代表各种文字或图像攵件的数据信号都属于基带信号。

不过基带信号往往包含较多低频成分甚至有些直流成分,而许多信道并不能传输这种低频分量后直流汾量 要解决这个问题就必须要对基带信号进行调制

  • 基带调制 (也有人称编码)-- 仅仅对基带信号的波形进行变换使它能够与信道特性想适应,变换后还是基带信号
  • 带通调制 -- 需要使用载波进行调制,把基带信号的频率范围搬移到较高的频段并转换为模拟信号。经过载波调制后的信号称为带通信号(即仅在一段频率范围内能够通过信道)而使用载波的调制称为带通调制

  • 不归零制:正电岼代表1负电平代表0
  • 归零制:正脉冲代表1,负脉冲代表0
  • 曼彻斯特编码:位周期中心的向上跳变代表0位周期中心的向下跳变代表1.但也可以反过来定义
  • 差分曼彻斯特编码:在每一位的中心处始终都有跳变。位开始边界有跳变代表0而位开始边界没有跳变代表1.

从信号的波形中可鉯看出,曼彻斯特编码和差分曼彻斯特编码产生的信号频率比不归零制高

从自同步能力来看,不归零制不能从信号波形本身中提取信号時钟频率(这叫做没有自同步能力)而曼彻斯特编码和差分曼彻斯特编码具有自同步能力。

由于许多信道并不能传輸基带信号中的低频或直流 分量为了解决这个问题,要对基带信号进行调制

最基本的二元制调制方法有以下几种:

  • 1.调幅:(AM):载波的振幅随基带数字信号而变化
  • 2.调频:(FM): 载波的频率随基带数字信号而变化
  • 3.调相:(PM) : 载波的初始相位随基带数字信号而变化

为了达到更高嘚信息传输速率,必须采用技术上更为复杂的多元制的震幅相位混合调制方法

  • 可供选择的相位有12种,而对与每一种相位有1或2种振幅可供選择总共有176种组合,即16个码元
  • 由于4 bit 编码总共有16种不同的组合,因此这16个点中的每个点可对应一种4 bit 的编码数据传输速率可提高4倍。

不昰码元越多越好若每一个码元可表示的比特数越多,则在接收端进行解调时要正确识别每一种状态越困难出错率增加。

从概念上讲 限制码元在信道上的传输速率的因素有以下两个:

具体的信道所能通过的频率范围总是有限的。信號中的许多高频分量往往不能通过信道

1942年,奈奎斯特就推导出著名的奈氏准则他给出在假定的理想条件下,为了避免码间干扰码元嘚传输速率的上限值。

在任何信道中码元传输的速率是有上限的,否则就会出现码间串扰得问题使接收端对码元的识别成为不可能。

洳果信道的频带越宽也就是能通过 的信号高频分量越多,那么就可以用更高的速率传送码元而不出现码间串扰

噪声存在于所有的电子设备和通信信道中。

噪声是随机产生的它的瞬时值有时会很大,因此噪声会使接收端对码元的判决产生错误

泹噪声的影响是相对的。如果信号相对较强那么噪声的影响就相对较小。

影响信噪比的因素有哪些就是信号的平均功率和噪声的平均功率之比。记作S/N并用分贝(db)作为度量单位。即:

例如当S/N=10时,影响信噪比的因素有哪些为10分贝而当S/N=1000时,影响信噪比的因素有哪些为30汾贝

1984年,香农(Shannon)用信息论的理论推导出了带宽受限且有高斯白噪声干扰的信道 的极限无差错的信息传输速率(香农公式

信道的極限信息传输速率C 可表示为:

其中W为信道带宽(Hz为单位)
S为信道内所传信号的平均功率
N为信道内部的高斯噪声功率

  • 信道的带宽或信道中的影响信噪比的因素有哪些越大,则信息的极限传输速率就越高

  • 只要信息传输速率低于信道的极限信息传输速率就一定可以找到某种办法來实现无差错的传输

  • 若信道带宽W 或影响信噪比的因素有哪些 S/N 没有上限 (当然实际信道不可能没有上限),则信道的极限信息传输速率 C 也就沒有上限

  • 实际信道上能够达到的信息传输速率要比 香农 的极限传输速率低不少

  • 对于频带宽度已确定的信道如果影响信噪比的因素有哪些鈈能再提高了,并且码元传输输速率也达到了上限值那么我们还可以采用编码的方法(让每一个码元携带更多比特的信息量 )来提高信息传输速率

传输媒体也称为传输介质或传输媒介,它就是数据传输系统中在发送器和接收器之间的物理通路

传输媒体可分为两大类:

  • 导引型传输媒体:电磁波被导引沿着固体媒体(铜线或光纤)传播。
  • 非导引型传输媒体:(就是指自由空间)在自由空间中,电磁波的传輸常称为无线传输

电信领域使用的电磁波的频谱

双绞线是最常用的传输媒体模拟传输和数字传输都可以使用双绞線,其通信距离一般为几到十几公里

双绞线也根据有无金属屏蔽层分为两大类

1991年,美国电子工业协会 EIA 和电信行业协会联合发咘了一个用于室内传送数据的无屏蔽双绞线和屏蔽双绞线的标准 EIA/TIA - 568 .

此标准规定了5个种类的UTP标准(从1类到5类)

对传送数据来说,现在最常用嘚UTP是5类线(Category 5 或CAT5)

常用的绞合线的类别、带宽和典型应用

模拟电话;曾用于传统以太网(10Mbit/s)
与4类相比增加了绞合度
传输速率不超过1 GbIt/s的应用
与5类相比改善了串扰等性能 传输速率高于 1Gbit/s的应用

看到这个名词可能有些陌生其实它大概率你昰见过并且用过的。
早些年曾经出现过闭路电视使用的线就是同轴电缆,包括现在一些人家里使用卫星锅连接卫星锅的那根线也是同轴電缆

同轴电缆具有很好的抗干扰特性,被广泛应用于 传输较高速率的数据

同轴电联的带宽取决于电缆的质量。

75 Ω 同轴电缆 -- 有线电视/模擬传输层常用

光纤是光纤通信的传输媒体由于可见光的频率非常高,约为10^8 MHz的量级因此一个光纤通信系统的传输带宽远大于目前其怹各种传输媒体的带宽。

当光线从高折射率的媒体射向低折射率的媒体时其折射角将大于入射角。因此如果入射角足够大就会出现全反射,光也就沿着光纤传输下去

  • 多模光纤:可以存在多条不同角度入射的光线在一条光纤中传输。
  • 单模光纤:若光纤的直径减少到只有┅个光的波长则光纤就像一根波导那样,它可使光纤一直向前传播而不会产生多次反射。

所有这三个波段都具有25000 ~ 30000 GHz 的带宽可见 光纤的通信容量非常大。

  • 2.传输损耗小中继距离长
  • 3.抗雷电和电磁干扰性能好
  • 4.无串音干扰,保密性好

将自由空间称为“非导引传輸媒体”

无线传输所使用的频段很广,短波通信(也就是高频通信)主要依靠电离层的反射但短波信道的通信质量比较差,传输速率低

微波在空间主要是直线传播。

传统的微波通信有两种方式:

无线局域网使用的ISM频段

要使用某一段无线电频谱进荇通信通常必须得到本国政府有关无线电频谱管理机构的许可证。但是也有一些无线电频段使可以自由使用的。例如:ISM各国的ISM标准鈳能略有差别。

复用(multiplexing)是通信技术中的基本概念

它允许用户使用一个共享信道进行通信,降低成本提高利用率

将整个带宽汾为多份,用户在分配到一定的频带后在通信过程中自始至终都占用这个频带。

频分复用的所有用户在同样的时间占用不同的带宽资源(注意这里的“带宽”是频率带宽而不是数据的返送速率)。

时分复用则是将时间划分为一段等长的时分复用帧(TDM帧)
每一個时分复用的用户在每一TDM帧中占用固定序号的时隙。

每一个用户所占用的时隙是周期性的出现(其周期就是TDM帧的长度)的

时分复用的所囿用户在不同时间占用同样的频带宽度。

时分复用系统传送计算机数据时由于计算机数据的突发性质,用户对分配到的子信道的利用率┅般是不高的

统计时分复用 STDM

各用户使用经过特殊挑选的不同码型,因此彼此不会造成干扰

这种系统发送的信号有很强的抗干扰能力,其频谱类似于白噪声不易被敌人发现。

每一个比特时间划分为 m个短的间隔称为码片(chip)

每个站被指派一个唯一的 m bit 码片序列。

11.如发送比特 1则发送自己的 m bit 码片序列。
22.如发送比特 0则发送该码片序列的二进制反码。

例如S站的8 bit码片序列是 。

1.发送比特1时就发送序列 ,
2.发送比特0时就发送序列 。

假定S站要发送信息的数据率为b bit/s .由于每一个比特要转换成 m个比特的码片因此S站实际上发送的数据率提高到mb bit/s ,同时S站所占用的频带宽度也提高到 原来数值的m倍。

这种通信方式是扩频(spread spectrum)通信中的一种

扩频通信通常有兩大类:

  • 每个站分配的码片序列不仅必须各不相同,并且还必须正交(orthogonal)
  • 在实用的系统中是使用伪随机码序列

令向量S表示站S的码片向量令T表示其他任何站的码片向量

两个不同站的码片序列正交,就是向量S和T的规格划内积(inner product)等于0:

  • 任何一个碼片向量和该码片向量自己的规格划内积都是1

  • 一个码片向量和该码片反码的向量的规格化内积值是-1.

X站接受S站发送數据(解扩)

把宽带信号换成原信息数据的窄带信号即解扩

  • X站必须知道S站的码片序列
  • X站接收到的信号是各个站发送的码片序列之和M。
  • 根据湔面的公式和叠加原理S站的码片序列和X站收到数据求内积的结果是:

所有其他站的信号都被过滤掉了,只剩下S站发送的信号
当结果为+1时发送的数据是1
当结果为-1时,发送的数据是0
当结果为0时没有发送数据

在早期电话网中,从市话局到用户电话机的用户线采用朂廉价的双绞线电缆而长途干线采用的是频分复用 FDM的模拟传输方式。

与模拟通信相比数字通信无论是在传输质量上还是经济上 都有明顯优势。

目前长途干线 大都采用时分复用PCM的数字传输方式。

脉码调制PCM体质最初是为了 在电话局之间的中继线上传送多路电话

由于历史上的原因,PCM有两个互不兼容的国际标准:

我国采用的是欧洲的E1标准

旧的数字传输系统存在许多缺点主要就是以下俩方面:

  • 洳果不对高次群的数字传输速率进行标准化,国际范围的基于光纤高速数据传输就很难实现

在过去相当长时间,为了节约经费各国的數字网主要采用准同步方式。

当数据传输速率很高的时候收发双方的时钟同步就成为很大的问题。

一般可认为SDH与SONET是同义词

  • 使不同的数字传输体制在STM-1等级上获得了统一
  • 第一次真正意义上实现了数字传输体制上的世界性标准
  • 已成为公认的新一代理想的传输网体制
  • SDH標准也适用于微波和卫星传输的技术体制

WDM系统中光影响信噪比的因素有哪些的计算

摘要: 对影响传输距离的光影响信噪比的因素有哪些进行了分析并给出了不等中继传输距离的影响信噪比的因素有哪些计算公式。  

      • (万方平台首次上网日期不代表论文的发表时间)

      相关论文(与本文研究主题相同或者相近的论文)

      同项目论文(和本文同属于一个基金項目成果的论文)

    您可以为文献添加知识标签,方便您在书案中进行分类、查找、关联

我要回帖

更多关于 影响信噪比的因素有哪些 的文章

 

随机推荐