钝化剂联合修复优势是什么?经济可行性如何?不同土壤重金属污染现状修复指向性如何

您还可以使用以下方式登录
当前位置:&>&&>&&>& > 农田土壤重金属污染黏土矿物钝化修复研究进展
农田土壤重金属污染黏土矿物钝化修复研究进展
摘要:随着我国工业化和城镇化的发展,农田土壤重金属污染日趋严重。钝化修复技术因其具有修复速率快、效果好、稳定性好、操作简单等优点较适应于大面积中轻度重金属污染农田修复治理。本文概述了农田土壤重金属污染钝化修复技术特点及国内外发展现状,阐述了农田土壤重金属污染钝化修复技术的发展历史。在此基础上就黏土矿物材料对农田土壤重金属污染钝化修复研究现状、农艺措施对农田土壤重金属污染黏土矿物材料钝化修复效应及稳定性影响、黏土矿物材料钝化修复对农田土壤环境质量影响等诸多方面进行了详细综述,并就黏土矿物材料在农田土壤重金属污染钝化修复中的应用及相关问题进行了展望。
  关键词:黏土矿物;土壤;重金属;钝化;进展   中图分类号:S156.99文献标识号:A文章编号:(6-08   农田土壤重金属污染主要来自于铅矿、铅锌矿等开采的废水和废渣排放,矿山开采废气中重金属的?U散、沉降,含重金属的工业废水排放与农田污水灌溉,含重金属农药、化肥与有机肥的大量施用,城市污水处理厂污泥排放和农用污染,以及含重金属的城市垃圾倾倒淋滤造成的农田土壤污染等。在过去几十年中,由于国家和地方政府对农田土壤重金属潜在污染的重视不够,导致目前我国农田土壤重金属污染呈现由点向面、由大中城市周边向远郊农村扩散的趋势,许多地区农田土壤重金属污染呈现出区域性和流域性污染发展态势,导致农田土壤环境质量恶化与农产品质量安全受重金属污染威胁十分严重,特别是在一些经济发达地区[1]。在南方酸性水稻区,如湖南、江西、湖北、四川、广西、云南、广东等地区,农田土壤重金属镉污染超标现象较为普遍,稻米镉超标明显。据有关文献不完全统计,我国耕地受到镉、铅、砷、铬、汞等重金属污染近2 000万公顷,约占总耕地面积的1/6,其中重金属镉污染耕地面积占近40%,主要涉及11个省25个地区[2]。日环境保护部和国土资源部发布全国土壤污染状况调查公报指出,全国土壤总的点位超标率为 16.1%,其中镉、汞、砷、铜、铅、铬、锌、镍8种无机污染物点位超标率分别为7.0%、1.6%、2.7%、2.1%、1.5%、1.1%、0.9%、4.8%[3]。面对农田重金属污染面广、量大,尚未成熟的大面积修复治理技术的现状,本文重点就黏土矿物材料在农田土壤重金属特别是镉污染钝化修复中的研究进展进行了较为详细的综述,以期为我国农田土壤重金属污染钝化修复技术的进一步发展提供新的思路。   1农田土壤重金属污染修复技术   农田土壤重金属污染修复对技术要求很高,在目前国内外研究中,大量土壤重金属污染修复成熟技术主要来自场地,如固化/稳定化技术、淋洗技术、电动修复技术、热解吸法等,这些修复技术成本均较高,同时在场地土壤重金属污染修复中,基本不考虑修复后土壤环境质量。而农田土壤重金属污染修复在保证修复效果的同时,必须保障修复前后土壤环境质量不会产生明显变化,不会影响农业正常生产。因此,场地重金属污染修复中大量成熟技术难以复制到农田土壤重金属污染修复中应用。目前,适用于农田土壤重金属污染修复的技术主要包括以下4种:(1)农艺调控技术,主要包括通过良好农田水分管理措施、良好肥料运筹、良好耕作及轮作措施,以及酸性土壤pH值调节措施等,降低土壤中重金属有效性,阻控重金属向农作物可食部位的迁移累积;(2)高效钝化修复技术,主要是通过向农田耕作表层土壤中添加环境友好型钝化材料,借助土壤重金属在钝化材料表面及内孔的吸附、络合、沉淀、置换等作用,降低土壤中重金属离子的活性,实现重金属离子在土壤中的钝化/固定化,阻控重金属离子在土壤中向农作物根系的运移,降低农作物可食部位对土壤重金属的吸收累积,实现农产品安全生产;(3)植物修复技术,主要是利用筛选出的富集及超富集植物对农田土壤中重金属的吸收提取,降低土壤中重金属含量的一种修复技术;此外,植物修复技术中还包括:植物稳定化技术,即利用植物根系分泌出的化学物质与土壤重金属发生反应,实现对土壤有害重金属的钝化/稳定化等;(4)植物叶面阻隔技术,主要是通过在农作物叶面喷施微量元素(简称叶面微肥或叶面调理剂),抑制或拮抗农作物对土壤重金属元素的吸收累积。   在上述4种农田土壤重金属污染修复技术中,农艺调控措施和植物叶面阻隔技术一般修复效率较低,特别是叶面阻隔技术,修复效果还存在不稳定、异地复制效果较差的缺点,目前有关植物叶面阻隔机理尚不完全清楚。农艺调控措施中,水分管理技术特别对南方酸性镉污染水稻田具有较好的调控效果,但长期淹水需要大量清洁水源,在干旱季节将会导致水源困难,对该技术的应用将产生不利影响;良好肥料运筹将受到农作物对肥料需求的限制,对能够造成土壤重金属活化的肥料控制又会受到农作物正常生长的肥料需求影响,所以如何在通过良好施肥措施控制土壤有害重金属活性的同时实现农作物的健康生长仍然需要开展大量研究工作;酸性土壤pH值调节目前主要使用石灰,石灰的大量长期使用会产生一系列负面影响,而且效果也普遍较低,操作极不便利。植物修复技术一般适应于重度重金属污染农田,且修复时间长,修复过程中影响农作物正常活动,大量修复补偿经费政府将难以承受,该项技术大面积推广应用存在困难。钝化修复技术具有修复速率快、效果好、稳定性强、价格适中、操作简单等优点,特别适用于大面积重金属污染农田土壤的修复治理,是目前国内研究最为活跃的农田土壤重金属污染修复技术。   2钝化修复技术的发展历史   农田土壤重金属污染钝化修复与场地重金属污染固化修复技术不同,根据美国国家环保署(EPA)的定义,固化技术主要指将污染物囊封入惰性基材中,或在污染物外面封装上低渗透性材料,通过减少污染物暴露的淋滤面积以达到控制污染物迁移的目的,也称为稳定化技术。两者最大的差别包括所使用的修复剂不同,修复目标物土壤的用处差异。其中农田土壤重金属污染所使用的钝化剂主要是一些环境友好型材料,包括:黏土矿物、生物炭、含磷材料、有机物料、硅钙类材料等,而场地污染修复所采用的固化材料主要包括:无机粘结物质,如水泥等;有机粘结剂,如沥青等热塑性材料;热硬化有机聚合物,如尿素、酚醛塑料和环氧化物等,玻璃化物质等。所以,场地重金属污染土壤固化修复后基本失去了农用价值。
  农田土壤重金属钝化修复研究主要开始于20世纪50年代,其研究思路来源于科研人员采用吸附剂吸附去除水体中有害重金属离子。通过科研人员大量研究发现,土壤重金属污染的危害主要源于存在于土壤中具有活性的那部分重金属离子,而重金属离子一旦被钝化或固定,使其活性下降,亦即降低其在土壤中的迁移性,其对植物的毒性将极大地下降,随后研究人员逐渐将这些重金属离子吸附剂应用到土壤重金属污染的吸附固定中。80年代以后,大量钝化材料,如黏土矿物材料、沸石分子筛材料、磷酸盐、石灰、有机物料、人工合成的沸石、污泥、含铁氧化物材料等被大量应用于土壤重金属Pb、Cd、As等污染的钝化修复研究中[4-15]。   由于不同重金属元素化学性质差异较大,在同一钝化材料表面的吸附、离子交换、络合等作用存在着明显的差别,而在重金属土壤毒性评价中常常用重金属离子的迁移性能来评估重金属元素在土壤环境中的归趋和生物学毒性。不同重金属离子间存在着独特的移动性能,所以在实际农田土壤重金属污染钝化修复中,一般难以找到单一的钝化修复剂用来降低大部分有害重金?倮胱拥挠行?性,而对土壤中微量元素和大量元素不产生吸附固定作用。在已有研究的大量钝化剂中部分适合于几种重金属离子,但对各种有害重金属离子的钝化效果还要取决于所加入钝化剂的量。   对于重金属污染程度较轻的农田土壤,可以根据重金属在土壤中的存在特性,向土壤中施加各种钝化修复剂,如黏土矿物、生物质、有机堆肥、人工合成沸石、橄榄皮等[16-20],用以修复被重金属污染的土壤。当外源钝化剂添加到土壤中后,与重金属离子产生离子交换、吸附、表面络合和沉淀等一系列反应。各种钝化剂的钝化修复效果除了与添加的剂量有关外,还与所使用钝化剂的种类和添加的形式、钝化剂自身与重金属离子的物理化学性质等密切相关。例如,在实际研究过程中,由于低成本和高溶解性,常用Ca(H2PO4)2代替CaHPO4,以Ca(H2PO4)2和CaCO3进行混合,能明显降低重金属元素的可提取态浓度,有效地实现对重金属离子进行钝化。由于易溶解和反应,CaO是一种非常有效的钝化剂,尤其是在钝化固定重金属镉、铅和锌元素方面,它的添加会导致土壤pH值迅速升高,促使土壤中重金属镉、铅和锌等形成氢氧化物沉淀;同时,由于石灰具有较高的水溶性,它能更有效地渗入土壤孔隙中,比其它钝化剂具有更好的修复效果。如在土壤中添加石灰、红泥和高炉渣钝化修复镉、铅和锌污染,试验结果表明,3种钝化剂均可明显降低土壤中镉、铅和锌的有效态含量,红泥在降低生菜地上部重金属含量方面效果最好,与对照相比,生菜中镉、铅和锌含量降低分别达86%、58%和73%;红泥和石灰修复下,土壤呼吸强度、脲酶和脱氢酶活性明显增加[21]。   在土壤化学修复中,石灰是使用时间最久的钝化剂,但石灰在实际应用中由于飞飘,农民撒施极不方便,而且在实际应用中发现施石灰对酸性水稻田Cd污染稻米降Cd效果并不十分理想,其中一个原因可能是由于Ca2+与Cd2+有相近的离子半径,所以导致已吸附在土壤颗粒上的Cd2+可被Ca2+重新置换到土壤溶液中而再次有可能被植物所吸收,导致施石灰降低作物吸收Cd的效果并不明显。同时发现施石灰降低土壤pH值维持时间较短,一般仅有2~3个月时间,土壤pH值又会迅速上升,这样需要反复增施石灰以便保持效果,而长期大量施用石灰又会导致土壤钙化、板结,影响农作物正常生长。此外,硫磺及某些还原性有机化合物可以使重金属可溶性转变成为高度难溶性的硫化物沉淀,磷酸盐类物质如磷灰岩、羟基磷灰石等可与重金属铅等反应形成难溶磷酸铅,可促进铅等重金属的沉淀,减少土壤中的铅离子等的可溶态和可提取态含量,但这些研究大部分仍然以实验室模拟试验为主。如国外相关科研人员在实验室利用Pb(NO3)2与天然磷矿石混合开展土柱试验,发现天然磷矿石可固定39%~100%的铅(British Standards Institution,1988);Haidouti[22]采用盆栽试验,对含汞920 μg/kg的污染土壤添加天然沸石进行处理并种植黑麦草和紫花苜蓿,研究发现土壤添加不同含量的天然沸石后,黑麦草和紫花苜蓿地上部和根部中汞的含量明显降低,分别减少50%和80%以上。因此,科研人员认为,在重金属污染土壤中添加少量沉淀剂如磷酸盐等,可以降低植物对重金属的吸收作用。但应该注意到的是向土壤中添加熟石灰、碳酸钙、硅酸钙和硅酸镁钙等化学物质,均会给土壤理化性质和微生物生长环境带来不同程度地不利影响,导致土壤环境质量下降,对作物生长产生不利影响。因此,需要进一步筛选和研究对土壤环境友好的重金属污染钝化修复剂。   3黏土矿物材料对农田重金属污染钝化修复   3.1黏土矿物材料的特性   利用天然矿物治理土壤重金属污染的方法是建立在充分利用自然规律的基础之上的,体现了天然自净化作用的特色,不会给农田土壤带来二次污染,具有环境友好型特点。黏土矿物(clay minerals)是黏土岩和土壤的主要矿物组成,是一些含铝、镁等为主的含水硅酸盐矿物[23]。除坡缕石、海泡石具链层状结构外,其余均具层状结构,颗粒极细,一般小于0.01 mm,加水后具有不同程度的可塑性。自然界中一般还包括高岭土、蒙脱土、伊利石等。   海泡石是具有链式层状结构的纤维状富镁硅酸盐黏土矿物,由二层硅氧四面体片之间夹一层金属阳离子八面体组成,为2∶1型,其化学式为Mg8(H2O)4[Si6O15](OH)4?8H2O,其中SiO2含量一般在54%~60%之间,MgO含量大部分在21%~25%之间,并常伴有少数置换的阳离子。我国是世界上少数几个富产黏土矿物材料海泡石的国家之一,但开发利用却十分滞后,目前仍以出口原料为主。由于海泡石比表面面积较大,理论计算其内表面可达500 m2/g,仅次于活性炭,但其价格仅为活性炭的十几分之一,价格极其低廉,而且易于开采。因此,加强对海泡石的开发利用研究有着极其重要的意义。Onodera研究表明,用海泡石吸附水体中Cd2+、Pb2+、Zn2+、Cu2+,在5 min内即可达到平衡,说明海泡石对重金属不仅具有较强的吸附能力,而且吸附速率快。在水溶液pH值为5时,浓度分别为100 mg/L的Cd2+、Pb2+、Hg2+溶液,经改性海泡石吸附处理后,重金属去除率均达到98%以上。pH值是影响海泡石吸附重金属能力的重要因素,pH值<5的酸性水溶液将不利于海泡石对重金属离子的吸附作用,pH值≥5的弱酸性和弱碱性条件有利于海泡石对水溶液中重金属的吸附。研究表明,与其它吸附剂相比,由于海泡石独特的晶体结构,具有比表面积大、吸附性能好和离子交换能力强的特点,对重金属离子具有较强的吸附固定能力,加工处理工艺简单,特别适宜于我国农田土壤重金属污染钝化修复治理,具有修复费用较低、钝化效果高、环境友好等优点,具有广泛的应用前景。
  3.2黏土矿物材料对农田土壤重金属钝化修复作用   黏土矿物钝化修复土壤重金属污染具有不同于其他修复技术的优点,如原位、廉价、易操作、见效快、不易改变土壤结构、不破坏土壤生态环境等,并且能增强土壤的自净能力[24]。国内外对黏土矿物钝化修复农田重金属污染开展了大量研究工作。研究表明,盆栽土壤经海泡石钝化修复后,pH值明显提高,有效态Cd含量则明显降低,与对照相比,在土壤重金属镉含量分别为1.25、2.50 mg/kg和5.00 mg/kg时,添加海泡石可使土壤Cd有效态含量分别降低11.0%~44.4%、7.3%~23.0%和4.1%~17.0%,海泡石钝化修复可以明显提高菠菜产量,在上述3种Cd浓度污染土壤下,海泡石钝化修复可使菠菜产量分别比对照增加2.76~5.11、0.68~1.40、1.48~7.12倍,在海泡石添加量为1%~10%时,菠菜地上部Cd含量分别比对照降低78.6%~300.4%、44.6%~169.0% 和18.1%~89.3%[25]。采用蛭石?χ亟鹗粑廴就寥佬薷幢砻鳎?添加蛭石的土壤pH值由初始的4.17增加到5.99,土壤中Cu、Ni、Pb、Zn交换态和碳酸盐结合态含量明显降低,试验蔬菜莴苣和菠菜可食部位重金属含量降幅达60%以上[26]。王林等[27]通过盆栽试验研究表明,菜地土壤中添加海泡石、酸改性海泡石以及二者与磷酸盐复配使用均能显著降低土壤提取态Cd、Pb的含量,最大降低率可分别达23.3%和47.2%,其中钝化材料复配处理效果要优于钝化材料单一处理。菜地土壤添加海泡石和磷酸盐,可在一定程度上提高土壤pH值,增加土壤对重金属离子的物理化学吸附作用,以及生成矿物沉淀等,促进污染菜地土壤中的Cd、Pb由活性高的交换态向活性低的残渣态转化,显著降低Cd、Pb的生物有效性和迁移能力。   当前,我国南方酸性水稻田重金属Cd污染形势突出,土壤Cd污染约占重金属污染的40%,稻米Cd超标比较普遍,稻米安全生产面临较大挑战,迫切需要高效、稳定、价低、友好的钝化修复材料及其修复技术。国内外尽管在长达几十年的时间中开展了大量钝化修复技术研究,但由于欧美发达国家农田污染面积一般较小,大量土壤重金属污染修复技术研究主要以场地污染研究为主,国内有关农田重金属污染钝化修复技术虽然研究较多,但主要以实验室研究为主,田间小面积试验为辅,技术大面积复制的高效性、稳定性、长期钝化修复的环境友好性等尚不明确,现有技术的大面积推广应用仍然存在许多不确定性。因此,加强南方酸性水稻田重金属污染,特别是Cd污染的修复技术研究急迫而艰巨。在已经开展的钝化修复研究中,以黏土矿物材料研究较多。在大田试验研究中,海泡石分别与磷肥和生物炭复配用于农田重金属Cd污染钝化修复,当666.7m2海泡石添加量为1 000 kg 时,可使糙米中Cd含量降低46.5%,当1 000 kg海泡石与333.5 kg 磷肥联合使用时,糙米镉含量降幅高达72.9%。当1 000 kg 海泡石与333 kg 生物炭联合使用时,糙米中Cd的降幅可达63.6%,联合钝化效果几乎是海泡石与生物炭单一修复之和,表明海泡石和生物炭之间具有很好的兼容性[28]。黏土矿物材料对重金属离子的吸附作用是其重要特性之一,其吸附机理包括物理吸附、化学吸附和离子交换3种。重金属铅在农田土壤污染中,大部分被表层土壤所吸附固定,这是因为土壤中含有的伊利石、蒙脱土和高岭土对Pb2+的吸附作用要比对Ca2+的吸附作用力大2~3倍,因而导致铅在耕作层土壤中的迁移力较弱,土壤中的蒙脱土和高岭土对铬的吸附作用同样较强[29]。土壤对砷的吸附则以黏土矿物中铁铝的氢氧化物为主[30]。Kumpiene等[31]研究了采用斑脱土修复As污染土壤,添加10%的斑脱土即可使土壤中As的淋溶量减少50%。郝秀珍等[32]通过盆栽试验研究了添加天然蒙脱土和沸石对铜矿尾矿砂上黑麦草生长的影响,结果发现,尾矿砂中加入蒙脱土可以显著降低有效态锌含量,但对有效态铜的含量无明显影响。屠乃美等[33]通过田间试验研究了不同改良剂对铅镉污染稻田的改良效应,结果显示,对Pb、Cd污染的水稻田土壤,施加适量的海泡石和高岭土具有一定的改良效果,水稻的生长发育得到明显改善,产量获得了一定的提高,土壤和糙米中2种重金属的含量明显降低。在施用钙镁磷肥、石灰、海泡石和腐植酸的试验研究中,除腐植酸外,另外3种修复剂均可有效地降低土壤重金属Cd的有效态含量,降幅达26%~97%,稻米Cd降低率可达6%~49%,其中,海泡石效果最为显著,而腐植酸效果一般[34]。说明黏土矿物材料对农田土壤重金属污染具有较好的钝化修复效果。   3.3农艺措施对钝化修复效应及稳定性影响   在农田重金属污染钝化修复中,农艺措施、耕作制度及环境条件的变化等都有可能对土壤重金属钝化修复效应及稳定性产生一定的影响。王永昕等[35]在重金属Cd污染土壤黏土矿物材料海泡石钝化修复下,研究施用鸡粪对钝化修复效应的影响,结果表明,与对照相比,增施鸡粪可以显著降低小白菜地上部和根部Cd含量,降低幅度分别达26.9%~32.1%和7.7%~24.8%;在大田试验中,钝化修复下增施鸡粪小白菜地上部和根部Cd含量可分别降低7.5%和16.4%。不同钝化修复下菜地土壤有效态Cd含量均较对照呈现不同程度的降低。其中,海泡石钝化修复下,增施鸡粪效果最为明显,盆栽试验和大田试验下,土壤有效态Cd最大降幅分别为17.7%和10.3%。王朋超等[36]通过盆栽试验研究表明,在菜地重金属Cd污染钝化修复中,施加过磷酸钙和钙镁磷肥后,油菜地上部Cd含量与对照相比分别降低54.3%~86.7%和74.4%~79.6%,其中当过磷酸钙和钙镁磷肥施加量为中高剂量时,油菜地上部Cd含量降低至 0.18 mg/kg和0.10 mg/kg。说明施加磷肥有利于菜地Cd污染钝化修复作用。淹水处理可使重金属Cd污染酸性稻田土壤处于还原状态,土壤pH值升高,OH-含量增加;此外,土壤中SO2-4被还原成S2-,均对Cd的沉淀有促进作用,有利于Cd污染酸性水稻田钝化修复的稳定性,而干湿灌溉和旱作均对镉钝化稳定性存在一定的不利影响[37]。总体来看,农艺措施对农田土壤重金属Cd污染钝化修复效应与稳定性具有一定的影响,而翻耕、轮作等钝化修复效应及稳定性影响目前研究较少。因此,在农田土壤重金属Cd污染钝化修复中如何发挥好农艺与耕作措施的协同强化作用,避免不利因素对钝化修复效应及稳定性的影响仍然需要通过开展大量研究工作,以便确定钝化修复中良好的农艺与耕作措施。
  3.4黏土?V物钝化修复对农田土壤环境质量的影响   农田土壤重金属污染钝化修复效应评价的一个重要方面就是环境友好性,即长期高效的钝化修复不应导致农田土壤板结、盐碱化和环境质量下降,影响农业稳产高产。目前,有关钝化修复对农田土壤环境质量影响研究较少,特别是长期跟踪监测研究更少,大量钝化修复研究主要集成在修复效应研究方面。连续2年酸性水稻田Cd污染土钝化修复试验表明,添加海泡石对土壤脲酶、磷酸酶活性和微生物量碳等均无明显影响,钝化修复提高了土壤过氧化氢酶活性,土壤微生物量N和真菌出现一定程度的降低[38]。在湖南省某地酸性Cd污染水稻田钝化修复试验中,稻田施用海泡石和坡缕石进行钝化稳定化,在水稻收获时,测定的土壤中脲酶、蔗糖酶、过氧化氢酶和酸性磷酸酶活性均有不同程度的提高,钝化修复明显有利于土壤中相关代谢反应的恢复,两种黏土矿物对土壤中水解氮含量无明显影响,但对土壤有效磷含量有一定的降低作用[39]。采集长期污灌菜地土壤进行盆栽试验表明,在黏土矿物材料海泡石钝化修复下,补充添加适量的鸡粪可明显提高土壤脲酶、蔗糖酶和过氧化氢酶活性,与对照相比,3种酶的含量分别增加14.0%~47.6%、2.0%~22.4%和6.4%~38.6%;大田试验条件下,3种酶的含量分别增加22.2%、5.5%和36.5%。说明在菜地土壤Cd污染黏土矿物材料钝化修复下,补充施加适量的鸡粪不仅可以起到强化Cd 钝化修复效应,而且可以进一步提高土壤酶活性,改善Cd 污染污灌菜地土壤环境质量[32]。孙约兵等[40]采用盆栽试验研究表明,海泡石钝化修复下,土壤脲酶、蔗糖酶和过氧化氢酶活性分别增加14.2%~28.8%、23.5%~34.0%和5.1%~15.4%,真菌和细菌数量分别增加45.6%~96.5%和15.5%~91.7%。而Cd污染酸性水稻田土壤鸡粪和生物炭复配持续两年钝化修复后,各修复的土壤有效磷和碱解氮含量间并无显著性变化[33]。   总体来看,黏土矿物材料钝化修复重金属污染农田土壤,在不影响农作物产量及品质的情况下,对土壤环境质量不会产生有害影响,而且具有一定的改善土壤环境质量的作用,有利于农作物的生长和产量及品质的提高。   4展望   当前我国农田土壤重金属污染形势严峻,迫切需要研发高效钝化阻控修复材料和产品及易操作、可推广的钝化修复技术体系。黏土矿物作为一种环境友好型材料,在我国储量丰富,易于开采,价格适中,且其自身与土壤环境融合性好,对土壤环境具有改善作用,但在今后仍需加强对黏土矿物材料长期钝化修复稳定性、黏土矿物材料不同添加剂量及不同老化时间对土壤重金属钝化修复效应、农艺与耕作制度及环境条件变化对黏土矿物材料重金属钝化修复效应与稳定性影响、黏土矿物材料长期钝化修复对土壤环境质量影响、黏土矿物材料对农田重金属污染钝化修复机理、中重度重金属污染农田黏土矿物材料与其他技术联合集成技术以及钝化修复技术异地复制稳定性的研究等。针对农田土壤重金属不同污染程度、不同土壤特性,采取相应的施加剂量和修复技术方法,以实现对轻中重度重金属污染农田的高效钝化修复,实现农产品安全生产,保障人体健康。   参考文献:   [1]Fu J, Zhou Q, Liu J, et al. High levels of heavy metals in rice (Oryza sativa L. ) from a typical E-waste recycling area in southeast China and its potential risk to human health[J]. Chemosphere, 2008, 71: .   [2]李培军, 孙铁珩, 巩宗强, 等. 污染土壤生态修复理论内涵的初步探讨[J]. 应用生态学报, 2006 , 17(4): 747-750.   [3]环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京:环境保护部,国土资源部,2014.   [4]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,2002.   [5]Evans L J, Spiers G A, Zhao G. Chemical aspects of heavy metal solubility with reference to sewage sludge amended soils[J]. International Journal of Environmental Analytical Chemistry, 1995, 59: 291-302.   [6]Ruby M V, Davis A, Nicholson A. In situ formation of lead phosphates in soils as a method to immobilize lead[J]. Environmental Science & Technology, 1994, 28: 646-654.   [7]Lombi E , Zhao F J, Zhang G Y , et al. In situ fixation of metals in soils using bauxite residue: chemical assessment[J]. Environmental Pollution, 2002, 118 : 435-443.   [8]Querol X, Alastuey A, Moreno N L, et al. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash[J]. Chemosphere,1-180.
  [9]Ruttens A, Adriaensen K, Meers E, et al. Long-term sustainability of metal immobilization by soil amendments: cyclonic ashes versus lime addition[J]. Environmental Pollution, 2010, 158 : .   [10]Lvarez-Ayuso E A, García-Snchez A. Palygorskite as a feasible amendment to stabilize heavy metal polluted soils[J]. Environmental Pollution,:337-344.   [11]Warren G P, Alloway B J, Lepp N W, et al. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides[J]. The Science of the Total Environment,:19-33.   [12]Castaldi P, Santona L , Melis M. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth[J]. Chemosphere, 5-371.   [13]Yin C Y,Mahmud H B,Shaaban M G . Stabilization/solidification of lead-contaminated soil using cement and rice husk ash[J]. Journal of Hazardous Materials B, :.   [14]Ruttens A, Mench M, Colpaert J V, et al. Phytostabilization of a metal contaminated sandy soil. Ⅰ: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals[J].Environmental Pollution,:524-532.   [15]Kuo S, Lai M S, Lin C W. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils[J]. Environmental Pollution, :918-925.   [16]Garcla-Sanchez A,Alastuey U A, Querol X. Heavy metal adsorption by different minerals: application to the remediation of polluted soils[J]. The Science of the Total Environment, 1999, 242: 179-188.   [17]Clemente R, Paredes C, Bernal M P. A field experiment investigating the effects of olive husk and cow manure on heavy metal availability in a contaminated calcareous soil from Murcia (Spain)[J]. Agriculture, Ecosystems and Environment, :319-326.   [18]Terzanoa R, Spagnuoloa M, Medici L. Zeolite synthesis from pre-treated coal fly ash in presence of soil as a tool for soil remediation[J]. Applied Clay Science, -110.   [19]Madejón E,de Mora A P,Felipe E,et al. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation[J]. Environmental Pollution,:40-52.   [20]Singh J S, Pandey V C, Singh D P. Coal fly ash and farmyard manure amendments in dry-land paddy agriculture field: effect on N-dynamics and paddy productivity[J]. Applied Soil Ecology, 2011, 47:133-140.
  [21]Lee S H, Lee J S, Choi Y J, et al. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments[J]. The Chemosphere, 2009, 77:.   [22]Haidouti C.Inactivation of mercury in contaminated soils using natural zeolites[J].The Science of the Total Environment,:105-109.   [23]吴平霄. 黏土矿物材料与环境修复[M]. 北京: 化学工业出版社, 2004.   [24]李剑睿, 徐应明, 林大松, 等. 农田重金属污染原位钝化修复研究进展[J]. 生态环境学报,2014, 23(4): 721-728.   [25]孙约兵, 徐应明, 史新, 等. 海泡石对镉污染红壤的钝化修复效应研究[J]. 环境科学学报,):.   [26]Mery M, Ornella A, Sandro B, et al. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite[J]. Chemosphere, 9-178.   [27]王林, 徐应明, 孙国红, 等. 海泡石和磷酸盐对镉铅污染稻田土壤的钝化修复效应与机理研究[J]. 生态环境学报,2012, 21(2): 314-320.   [28]梁学峰, 韩君, 徐应明,等. 海泡石及其复配原位修复镉污染稻田[J]. 环境工程学报,2015, 9(9): .   [29]林云青, 章?娅. 黏土矿物修复重金属污染土壤的研究进展[J]. 中国农学通报, ):422-427.   [30]鲁春霞. 黏土矿物对环境污染的防治作用[J]. 中国沙漠, 1999, 19(3):265-267.(下转第167页)山 东 农 业 科 学):163~167Shandong Agricultural Sciences山 东 农 业 科 学第49卷第2期陈鹏云,等:我国棉花品种改良的方向与策略DOI:10.14083/j.issn.17.02.034   收稿日期:   基金项目:国家现代农业产业技术体系之棉花产业技术体系项目(CARS-18-10);转基因新品种培育重大专项(-003、1B);泰山学者建设工程专项(NO.ts)   作者简介:陈鹏云(1990-),男,硕士研究生,研究方向为分子育种。 E-mail:
  通讯作者:张军(1968-),男,博士,研究员,从事棉花生物技术与育种研究。E-mail: scrczj@百度搜索“就爱阅读”,专业资料、生活学习,尽在就爱阅读网,您的在线图书馆!
欢迎转载:
推荐:    

我要回帖

更多关于 重金属污染 的文章

 

随机推荐