什么品牌的石墨烯功能涂层铝箔涂层铜好?求大神推荐?

石墨烯涂层模具研发获突破发布日期:浏览次数:字号:[
]近日在青岛高新区实现了新的突破:石墨烯涂层热挤压模具的成功研制给模具穿上了光滑的“外衣”。用它生产出的镁合金热挤压件光泽度和产量大大提升。从此,模具不再是一次性使用的消耗品,成本降低、技术提升,国内镁合金产业也有望迎来跨越式发展。  在青岛高新区石墨烯产业园的卡尔奔新材料公司,《经济日报》记者见到了该公司研发的石墨烯涂层模具,以及用这种模具生产出的镁合金棒。用石墨烯涂层模具制作的镁合金棒表面光洁平滑,由于受氧化影响小,颜色亮洁如镜。技术主要发明人、卡尔奔新材料公司技术顾问姜海滨介绍,镁合金棒之所以光洁,秘诀在于模具上接触镁合金的位置有一小片石墨烯涂层。  石墨烯是强度最大的新型纳米材料,具有强度大、柔韧性强与结构稳定等优势,卡尔奔公司利用独有的设备与工艺,在镁合金热挤压模具表面生成一层仅有几百纳米厚度的石墨烯涂层,使模具具有耐高温、高硬度、低摩擦系数等优良特性,同时可提高镁合金型材的挤压速度30%以上。“国内很多高校和实验室都在研究解决镁合金变形难题,共同的难点是加在模具上的涂层在高温环境中容易脱落。但我们的涂层并不是涂抹在表面,而是通过营造特殊的环境,使材料‘生长’在模具表面。”姜海滨介绍说,实践证明石墨烯涂层模具完全能实现1毫米以内镁合金型材的挤压,为实现高端镁合金型材产业化提供了技术保障。  铝合金由于强度高、重量轻等优势,广泛应用于生产生活。镁合金的比刚度与铝合金相当,但重量更轻、比强度更高、抗震减噪性能更好。基于这些优良性能,航空航天器、汽车轮船等交通运输工具的减重节能都离不开镁合金。最重要的是,镁资源比铝资源储量丰富,我国现存的铝资源使用年限不超过10年,但镁资源占世界储量的70%,因此镁合金被普遍认为是能全面替代铝合金的未来主导材料。难点在于较精细的镁合金件需要用挤压工艺制作,国内大多数厂家还无法实现,每年要花费巨额外汇进口镁合金型材。另一方面,现有的镁合金企业为了提高产品光泽度,只能购买价格更高的模具,高昂的成本令企业难以承受。  对此,山东某金属公司董事长孙强深有体会。今年5月份,经青岛高新区工作人员引荐,正焦急地寻求技术解决方案的孙强与卡尔奔公司尝试合作。孙强给记者算了一笔账,该公司每天24小时不间断生产,原本一天就要损耗十几套模具,石墨烯涂层模具一套就能使用10个小时,一天只需要两套模具。不仅如此,模具达到使用寿命后,重新加涂层还可继续使用;模具不再是一次性消耗品,按照每套模具2000元至3000元成本计算,每天至少可节省3万元。“这意味着镁合金成本将大为降低,有望给行业带来巨大商机。”
来源: 经济日报作者:Kirill I. Bolotin 来源:《ACS纳米》 发布时间: 14:58:03
选择字号:小 中
石墨烯或是防金属腐蚀的理想涂层
据美国物理学家组织网2月22日报道,科学家们发现,神奇材料石墨烯真是一个&多面娇娃&,除了是目前已知的最坚硬材料外,还是目前最纤薄的涂层,能够保护铜、镍等金属不被腐蚀。最新研究发表在美国化学学会的期刊《ACS纳米》上。
在最新研究中,迪拉吉&帕拉赛和同事指出,金属生锈和腐蚀是一个非常严重的全球性问题,科学家们都在殚精竭虑地寻找减慢或防止其生锈或腐蚀的方式。腐蚀源于金属的表面同空气、水或其他物质发生了接触,目前普遍采用的防腐蚀方法是用某些材料包裹金属从而将其表面隐藏起来,但这些包裹材料都有其自身限制。
石墨烯只有一层碳原子的厚度,是目前世界上最薄的材料。科学家们发现,在石墨烯内,碳原子像一个细铁丝网围栏一样排列成一层,该层非常纤薄,使得其看起来就是透明的,而且,一盎司(28.350克)石墨烯足以覆盖28个足球场。
最新研究发现,不管是将石墨烯直接放在铜、镍表面上还是通过其他方法转换到其他金属表面,都能让金属免遭腐蚀。在实验中,他们让单层石墨烯通过化学气相沉积(CVD)在铜上生长从而包裹住铜,结果表明,其腐蚀速度比光秃秃的铜慢7倍;通过让多层石墨烯在镍上生长从而包裹住镍,其腐蚀速度比光秃秃的镍慢20多倍。另外,令人惊奇的是,单层石墨烯与传统有机涂层的抗腐蚀能力一样,但有机涂层的厚度是石墨烯的5倍。
科学家们表示,石墨烯涂层可能是理想的抗腐蚀涂层,可以应用于很多方面,尤其是需要纤薄涂层的领域,比如用来包裹连接设备和航空航天设备以及用于移植设备中的微电子元件等。(来源:科技日报 刘霞)
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的&来源&,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
&打印& 发E-mail给:&
以下评论只代表网友个人观点,不代表科学网观点。
<span style="color:#12/6/9 14:46:18 hewenting
听起来很不错,但是问题是这成本会不会很高啊,用在一般的材料上值得吗?这一层石墨稀会影响基体的性能吗?
<span style="color:#12/5/11 21:29:20 fm
其实大力丸的主要成分就是石墨烯
<span style="color:#12/3/5 20:19:33 GoogleMIT
石墨烯的融化温度,理论计算是在5000K左右。实际上应该更低,因为纯度达不到理论那么高。
<span style="color:#12/2/27 23:25:25 ad
这个靠谱吗?我怎么觉得石墨烯在一定的电位下发生氧化呢?
<span style="color:#12/2/27 16:23:06 yixiong109
涂在航空材料上,耐高温吗????
万能的石墨烯。。扫一扫 加微信
> 消息正文
七大新型防腐涂层让铜合金辉煌依旧
Cu及铜合金优异的金属特性,其被广泛地应用于国民经济的各个领域,在中国有色金属材料的消费中仅次于Al。
Cu及铜合金为什么容易腐蚀呢?
由于Cu 的电极电位比较正,长期处在含氧的水、酸中或者含有 Cl- 、NH4+的溶液以及在高温、高盐分的海水及海洋大气氛围中,则会产生较严重的腐蚀。例如用镍铝青铜、高锰铝青铜等制造的冷凝器、螺旋桨、螺旋桨导流罩等海洋船舶构件发生海水侵蚀;铝青铜和锰青铜等制造的海水泵阀、海水管线、轴套等船舶零部件在化学腐蚀和机械磨损下极易老化或失效。后期维修费用较高,而换新的代价则更为昂贵。
因此,采用防腐涂层对铜合金表面进行表面防护显得十分迫切与必要。常用的铜合金表面防护技术主要有溶液沉积法、铸渗法、化学热处理法、喷涂技术、表面内氧化法、辉光离子渗钛法、气相沉积技术以及激光熔覆技术等,最新研究进展主要包括以下几方面:
1、 金属涂层
铜合金表面金属涂层
金属涂层不仅可以弥补铜合金表面在强度、硬度、抗高温以及耐磨性等性能方面的不足,还能够使铜合金表面的抗腐蚀能力得到有效提高。铜合金表面金属涂层主要包括:
(1)单一金属涂层:如纯 Cr、纯 Ni、纯 Ti 等,二元合金涂层如 Cu-Zn、Sn-Zn、Ni-Co、Ni-Fe、Ni-B、Ni-P 等,
(2)多元合金涂层:如 Ni-Co-W 、Ni-Fe-W、Ni-W-P、Pb-Sn-Sb 等,陶瓷涂层 Al 2 O 3 、TiO 2 、TiB 2 、ZrO 2 、WC 等;
(3)陶瓷/金属复合涂层:如 WC-Co、TiB 2 -Cu 等。
将金属涂层与表面制备出具有超疏水结构的金属涂层可以获得理想的抗腐蚀效果。马壮等采用火焰喷涂技术制成陶瓷/渗铝复合涂层未封孔时的耐酸蚀能力和耐盐蚀能力分别是纯铜基体的 5 倍和 5.04 倍,封孔后的耐酸蚀能力和耐盐蚀能力分别是纯铜基体的16.3倍和25.65倍。之后,他们又采用热化学反应方法在工业纯铜表面制备了稀土/陶瓷复合涂层以及煤矸石/陶瓷复合涂层,这两种陶瓷复合涂层均能在H2SO4 溶液、NaCl 溶液以及石油中为铜基体提供有效的保护。
2、合成树脂防腐涂层
图片来源:
合成树脂是由乙烯、氯乙烯、丙烯等低分子单体通过聚合反应人工合成的一类高分子化合物。以合成树脂为主要成膜物质涂刷在酸化处理过的铜合金产品表面,干燥固化后形成合成树脂涂层。复合改性合成树脂防腐涂层不仅成本和施工要求低,其抗水性和抗渗漏性强,耐化学品腐蚀性强,绝缘性好,与铜合金基底的附着力强,机械强度高,固化收缩率低。复合改性和环保树脂涂层是未来的发展方向。
白雪等采用聚氨酯改性环氧树脂、改性芳香胺固化剂、云母氧化铁红颜料制备出一种用于铜合金表面的海水管路防腐涂层,经北海海域在 1 a 的铜合金管路上实际使用后,涂层没有出现鼓泡、脱落、锈蚀等现象,能够为船舶上的铜合金海水管路提供良好的保护。
国内外研究人员发现利用纳米材料如蒙脱土、碳纳米材料、纳米二氧化硅、纳米二氧化钛、纳米铜等对合成树脂进行改性 ,可以使其耐腐蚀性、高温耐磨性等较普通改性树脂有大幅度的提高。
3 、溶胶-凝胶涂层
图片来源:
溶胶-凝胶涂层的制备大多以金属醇盐、无机盐为原料,在水、催化剂等的共同作用下,辅以机械搅拌等方法促进其水解和缩合反应形成溶胶,溶胶中的粒子相互交联固化干燥后即形成溶胶-凝胶涂层。溶胶-凝胶法工艺设备简单,成膜均匀。
应用:有机硅溶胶-凝胶涂层兼具有机材料高韧性、高致密性和无机材料高耐磨、高耐热性。对青铜制品及其他多种金属可实现有效的户外保护。
4、 石墨烯防腐涂层
铜合金表面石墨烯防腐涂层
石墨烯独特的碳原子单片层纳米结构具有超大比表面积、超高硬度、超强导电性和导热性等特性,能够在金属和腐蚀介质之间起到有效的物理阻隔作用。另外,纳米结构石墨烯可以充分发挥其小尺寸效应填补到涂料的缺陷中,阻碍小分子腐蚀介质的侵蚀,起到钝化镀层金属的作用。石墨烯涂层的制备方法包括机械剥离、液相以及气相剥离等物理方法,也包括。
利用化学气相沉积(CVD)、氧化还原等化学方法在Cu表面覆盖石墨烯薄膜,可使腐蚀电流密度远小于纯铜,腐蚀速率比纯铜慢了约7倍。
5、超疏水表面防腐涂层
铜合金表面防水涂层
根据自然界中的&荷叶效应&,研究人员采用一定的技术手段对铜合金表面进行形貌调控,提高材料表面静态接触角,使液体介质不易渗入基体从而起到有效的自清洁和防腐蚀作用,即表面具备超疏水能力。将超疏水表面与各种防腐涂层相结合,制备出具有超疏水性能的复合防腐涂层将会在铜合金防腐领域发挥更大的作用。
6、 自组装单分子膜
图片来源:
自组装单分子膜是指有机活性分子利用化学键作用自发吸附在基体表面从而形成的一层有序致密的单层分子膜 ,其制备方法简单,只需将基体浸入到含有有机活性分子的溶液中即可自发成膜。按有机分子头基种类不同可以将铜合金材料表面的自组装单分子膜分为烷基硫醇类、硅烷类、希夫碱类、脂肪酸类等&&氨基酸类化合物、吡咯烷二硫代氨基甲酸铵、葡萄糖酸盐等环境友好型自组装体系成为研究热点 。
铜合金表面缓蚀剂保护膜
铜缓蚀剂保护膜技术简单、高效,主要分为有机和无机缓蚀剂保护膜。
无机缓蚀剂保护膜:铬酸盐类、磷酸盐类和稀土金属盐类,目前,将稀土金属盐与氧化性酸、辅助成膜剂等有机物质复合搭配可制备出高耐蚀性能钝化膜。
有机缓蚀剂保护膜:唑类缓蚀剂类,如巯基苯骈噻唑钠 (MBT)、甲基苯骈三氮唑 (TTA)、BTA及其衍生物等,这些有机铜缓蚀剂最大的优势在于其缓蚀效率较高,可达 90%以上。
未来铜合金防腐涂层的研究主要有以下几个方向:
(1) 加强对现有防腐涂层材料之间协同缓蚀机理的研究以提高缓蚀效率,在减少使用量的同时节约经济成本。
(2) 将超疏水表面制备技术与防腐涂层材料相结合,进一步提高防腐涂层的保护效果。
(3) 加快新型耐蚀填料的开发及复合涂层材料的制备,如石墨烯等微纳碳材料复合防腐涂层。
(4) 利用先进的计算机技术与分析检测技术,从分子、原子的水平上研究防腐涂层材料在铜合金表面上的缓蚀机理,开发高效率、低毒性的新型环保防腐材料。
来源:中国知网
一周新闻 Top 10
www. Copyright (C),All Rights Reserved 版权所有&&您好,欢迎来到企汇网!
客服电话:400-
扫一扫有惊喜企汇网微信公众号
化工机械工控系统焊接紧固模具刀具道路养护包装印刷粮食油类生鲜水果畜牧种苗菌类水产绿化盆景农药化肥坚果果仁水暖五金家居装修施工材料橡胶塑料楼宇设施防水保温金属建材能源产品金属矿产有色金属非金属矿产工业润滑油板材卷材不锈钢材电工器材配电输电电气设备发电机组高压电器低压电器电动机工艺饰品节庆用品婚庆用品民间工艺数码礼品金银珠宝纪念收藏汽摩配件维护工具汽车改装车身附件汽车电器汽车内饰制动系统车辆分类仓储设备安全用品配件附件防护保养智能交通集装整理物流服务特种运输仓储配送船舶水运物流器材运输搬运起重装卸中介服务公关服务认证服务创意设计搬家服务房屋租赁维修服务
氧化石墨烯胶体哪个品牌好?
产品价格面议
所属行业工人岗位求职
浏览次数1912618次
发布日期日
认证状态未认证,请谨慎交易
扫一扫,用手机查看
会员级别:普通会员
所在地区:
在线客服:
主营产品:
二维码: 企业名称加二维码
欢迎选购氧化石墨烯胶体,请选择中科院成都有机化学有限公司。
石墨烯是一种由碳原子构成的单原子层片状结构的新材料,有极好的透光性和导热性,是已知的最薄、最坚硬、电阻率最小的材料。
我公司制备的石墨烯比表面在500~1000m2/g,厚度在0.55~3.74nm.
石墨烯具有非常高的比表面,难以在极性或非极性溶剂中分散。
目前我们在石墨烯溶液中加入分散剂,超声得到分散均匀稳定的石墨烯分散液。
sunadtimesnano
纯度:>95wt%
厚度:0.55~3.74nm
直径:0.5-3μ%0m
层数:1-10层
比表面积:>500m2/g
产品状态:粉末
粉末颜色:黑色
四川省企业名录
还没找到您需要的?立即发布您的求购意向,让工人岗位求职公司主动与您联系!
本网页所展示的信息包括但不限于文字、图片、音频、视频等,由会员自行提供并对其真实性、准确性和合法性负责,本平台(本网站)仅提供展示服务,请谨慎交易,因交易而产生的法律关系及法律纠纷由您自行协商解决,本平台(本网站)对此不承担任何责任。
在您的合法权益受到侵害时,欢迎您向邮箱发送邮件,或者进入了解投诉处理流程,我们将竭诚为您服务,感谢您对企汇网的关注与支持!
按排行字母分类:
还没有账号,请点击此处进行
记住用户名
McAfee认证
中国电子商务诚信单位
青年文明号捷配欢迎您!
微信扫一扫关注我们
当前位置:&>>&&>>&&>>&石墨烯到底是什么?它能给电子产业带来什么?
&&& 上周一,除了NXP和合并的消息震惊业界外,还有一条新闻备受关注――“日,全球首批3万部量产石墨烯手机在重庆发布”。“据消息称,这款石墨烯手机,核心技术由中国科学院重庆绿色智能技术研究院,和中国科学院宁波材料技术与工程研究所开发,采用最新研制的石墨烯触摸屏、电池和导热膜等新材料,在屏幕显示、电池续航能力以及防止手机发烫方面有一定优势。”(石墨烯手机首次量产的背后)
&&& 在去年,华为公司创始人任正非也在一次采访中大赞石墨烯的前景。
&&& “我认为这个时代将来最大的颠覆,是石墨烯时代颠覆硅时代,但是颠覆需要有继承性发展,在硅时代的成功佼佼者最有希望成为石墨烯时代中的佼佼者。边沿机会还是硅时代的领先公司。不可能完全凭空出来一个小公司,然后就领导了时代脉搏,而且石墨烯这个新技术在世界上的发展也不是小公司能做到的。”
&&& 那么,石墨烯究竟有何神奇之处,以至于各界都在追捧?下面我们一起来了解石墨烯到底是什么?
&&& 石墨烯是什么?
&&& 石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆和康斯坦丁?诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。[1]
&&& 虽然名字里带有石墨二字,但它既不依赖石墨储量也完全不是石墨的特性:石墨烯导电性强、可弯折、机械强度好,看起来颇有未来神奇材料的风范。如果再把它的潜在用途开个清单――保护涂层,透明可弯折,超大容量器,等等――那简直是改变世界的发明。[2]
&&& 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m?K,高于碳纳米管和金刚石,常温下其迁移率超过 cm2/V?s,又比纳米碳管或硅晶体(monoline )高,而率只约10-6 Ω?cm,比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。
&&& 更多的描述[1]
&&& 石墨烯的碳原子排列与石墨的单原子层相同,是碳原子以sp2杂化轨道呈蜂巢晶格(honeycomb crystal )排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子网格。石墨烯的命名来自英文的graphite(石墨)+-ene(烯类结尾)。石墨烯被认为是平面多环芳香烃原子晶体。
&&& 石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42?。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。
&&& 石墨烯是构成下列碳同素异形体的基本单元:石墨,木炭,碳纳米管和富勒烯。完美的石墨烯是二维的,它只包括六边形(等角六边形);如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。
&&& 石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣。在2006年3月,佐治亚理工学院研究员宣布,他们成功地制造了石墨烯平面场效应晶体管,并观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路。
&&& 石墨烯的问世引起了全世界的研究热潮。它是已知材料中最薄的一种,质料非常牢固坚硬,在室温状况,传递电子的速度比已知导体都快。
&&& 它诞生至今都十年了,但透明手机在哪呢?[2]
&&& 其实就在2012年,因石墨烯而获得诺贝尔奖的康斯坦丁?诺沃肖洛夫(Konstantin Novoselov)和他的同事曾经在《自然》上发表文章讨论石墨烯的未来,两年来的发展也基本证明了他们的预测。他认为作为一种材料,石墨烯“前途是光明的、道路是曲折的”,虽然将来它也许能发挥重大作用,但是在克服几个重大困难之前,这一场景还不会到来。更重要的是,考虑到产业更新的巨大成本,石墨烯的好处可能不足以让它简单地取代现有的设备――它的真正前景,或许在于为它的独到特性量身定做的全新应用场合。
&&& 制备方法[1]
&&& 在2008那年,由机械剥离法制备得到的石墨烯乃世界最贵的材料之一,人发截面尺寸的微小样品需要花费$1,000。渐渐地,随着制备程序的规模化,成本降低很多。现在,公司行号能够以公吨为计量单位来买卖石墨烯。换另一方面,生长于碳化硅表面上的石墨烯晶膜的价钱主要决定于基板成本,在2009年大约为$100/cm2。使用化学气相沉积法,将碳原子沉积于镍金属基板,形成石墨烯,浸蚀去镍金属后,转换沉积至其它种基板。这样,可以更便宜地制备出尺寸达30英伎淼氖┍∧ぁ
&&& 撕胶带法/轻微摩擦法
&&& 最普通的是微机械分离法,直接将石墨烯薄片从较大的晶体上剪裁下来。2004年,海姆等用这种方法制备出了单层石墨烯,并可以在外界环境下稳定存在。典型制备方法是用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。但缺点是此法利用摩擦石墨表面获得的薄片来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供应用的石墨薄片样本。
&&& 碳化硅表面外延生长
&&& 该法是通过加热单晶碳化硅脱除硅,在单晶(0001)面上分解出石墨烯片层。具体过程是:将经氧气或氢气刻蚀处理得到的样品在高真空下通过电子轰击加热,除去氧化物。用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至℃后恒温1min~20min,从而形成极薄的石墨层,经过几年的探索,克莱尔?伯格(Claire Berger)等人已经能可控地制备出单层或是多层石墨烯。在C-terminated表面比较容易得到高达100层的多层石墨烯。其厚度由加热温度决定,制备大面积具有单一厚度的石墨烯比较困难。
&&& 金属表面生长
&&& 取向附生法是利用生长基质原子结构“种”出石墨烯,首先让碳原子在1150℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,镜片形状的单层的碳原子“孤岛”布满了整个基质表面,最终它们可长成完整的一层石墨烯。第一层覆盖8 0 %后,第二层开始生长。底层的石墨烯会与钌产生强烈的相互作用,而第二层后就几乎与钌完全分离,只剩下弱电耦合,得到的单层石墨烯薄片表现令人满意。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响碳层的特性。另外彼得?瑟特(Peter Sutter)等使用的基质是稀有金属钌。
&&& 氧化减薄石墨片法
&&& 石墨烯也可以通过加热氧化的办法一层一层的减薄石墨片,从而得到单、双层石墨烯 。
&&& 肼还原法
&&& 将氧化石墨烯纸(graphene oxide paper)置入纯肼(Hydrazine, N2H4)溶液(一种氢原子与氮原子的化合物),这溶液会使氧化石墨烯纸还原为单层石墨烯。
&&& 乙氧钠裂解
&&& 一份于2008年发表的论文,描述了一种程序,能够制造达到公克数量的石墨烯。首先用钠金属还原乙醇,然后将得到的乙醇盐(ethoxide)产物裂解,经过水冲洗除去钠盐,得到黏在一起的石墨烯,再用温和声波振动(sonication)振散,即可制成公克数量的纯石墨烯。
&&& 切割碳纳米管法
&&& 切割碳纳米管也是制造石墨烯带的正在试验中的方法。其中一种方法用过锰酸钾和硫酸切开在溶液中的多层壁碳纳米管(Multi-walled carbon nanotubes)。另外一种方法使用等离子体刻蚀(plasma etching)一部分嵌入于聚合物的纳米管。
&&& 石墨的声波处理法
&&& 这方法包含分散在合适的液体介质中的石墨,然后被超声波处理。通过离心分离,非膨胀石墨最终从石墨烯中被分离。这种方法是由Hernandez等人首次提出,他得到的石墨烯浓度达到了0.01 mg/ml在N-甲基吡咯烷酮(N-methylpyrrolidone, NMP)。然后,该方法主要是被多个研究小组改善。特别是,它得到了在意大利的阿尔贝托?马里亚尼(Alberto Mariani)小组的极大改善。Mariani等人达到在NMP中的浓度为2.1mg/ml(在该溶剂中是最高的)。同一小组发表的最高的石墨烯的浓度是在已报告的迄今在任何液体中的和通过任意的方法得到的。一个例子是使用合适的离子化液体作为分散介质用于石墨剥离;在此培养基中获得了非常高的浓度为5.33mg/ml。
&&& 近期的一些应用
&&& 基于石墨烯的柔性显示器(Flexible Display 可挠式显示器)[3]
&&& 剑桥石墨烯中心(Cambridge Graphene Centre, CGC)和Plastic Logic公司日前宣称首次将石墨烯(graphene)应用到基于晶体管的柔性设备中,此举将开启实现完全可穿戴及柔性设备的机会。
&&& 这两个组织之间的合作伙伴关系让剑桥石墨中心(CGC)在石墨烯领域的专业知识可与Plastic Logic为柔性电子产品所早已开发完成的晶体管和显示处理制程可以相互结合。此一原型产品是第一个可以说明这样的伙伴关系将如何加快石墨烯商业开发的例子,为将更多石墨烯和类石墨烯(graphene-like)材料应用到柔性电子的发展迈出了第一步。
&&& 该原型是一主动式矩阵电泳显示器(active-matrix electrophoretic display),与现今电子阅读器使用的屏幕类似,但它是由可挠式塑料制成,而不是玻璃。与传统的显示器相比,该显示器的像素电子器件,或背板(backplane),包括了一溶液处理过的(solution-processed)石墨烯电极,它取代了Plastic Logic公司传统设备中的溅镀金属电极层,同时对产品和制程都带了好处。
&&& 石墨烯比像是氧化铟锡(ITO)的传统陶瓷式替代方案具有更佳的柔性,也比金属膜具有更佳的透通性。这种超柔性的(ultra-flexible)石墨烯层让许多产品得以实现,包括可折叠的电子产品。石墨烯也可用溶液来处理,从而带来了采用更高效印刷及卷对卷(roll-to-roll)制造方法所具有的固有优势。
&&& 每英寸有150个像素的背板是以Plastic Logic的有机薄膜晶体管(OTFT)技术在低温下制成的。石墨烯电极在溶液中沈积,随后再以微米尺度特征做出图样(pattern),然后完成背板。
&&& 对于此一原型而言,背板结合了电泳成像薄膜,可开发具有超低功率和耐用性佳的显示器。未来的展示可能会将液晶显示器(LCD)和有机发光二极管(OLED)技术纳入,以实现全彩色和视频的功能。轻巧可挠的主动式矩阵背板可用来感测,而新颖的数字医疗成像和手势识别应用已经在开发中了。
&&& 剑桥石墨烯中心主任Andrea Ferrari教授解释说:“ 我们很高兴看到我们与Plastic Logic公司的合作,获得第一个利用在其像素电子中的石墨烯所做成的基于石墨烯之电泳显示器之结果。对实现完全可穿戴且灵活的设备而言,这是很重要的一步。此一成果巩固了剑桥石墨烯技术的群集,并展示了在协助将石墨烯从实验室带进到工厂的发展方面,有效的产学合作在其中所所扮演的关键性角色。”
&&& Plastic Logic公司的CEO Indro Mukerjee说:“石墨烯的潜力是众所周知的,但工业的制程工程现在要求要将石墨烯从实验室带进到产业界,这次的展示彰显出Plastic Logic在此一发展趋势的领先地位,而此一发展趋势将很快就可以实现新一代的超可挠式,或甚至是可折迭的电子产品。”
&&& 此一计划是由Engineering and Physical Sciences Research Council (EPSRC)及EUs Graphene Flagship所共同资助的。
&&& 为观察大脑活动提供更佳视野的透明传感器[3]
&&& 在美国国防部高级研究计划局(DARPA)的可靠神经接口技术(Reliable Neural-Interface Technology ,RE-NET)计划的支助下,一组由美国威斯康星大学麦迪逊分校研究人员所组成的团队已开发出一种“看不见的(invisible)”植入式医疗传感器数组,这种数组将不会阻碍对大脑活动的观察。
&&& 根据最近一篇刊载在Phys.org上的文章指出,“神经信号的电气监控和刺激是研究脑功能的一种唯一可以依靠的技术,而使用光子(photons)而非电子的新兴光学技术为神经网络结构的可视化及大脑功能的探索,开启了新的契机。电气和光学技术具有明显的互补优势,如果两者一起使用,将可对在高分辨率情况下的大脑研究,提供深远的效益。然而,要将这些技术结合起来,却是一件极具挑战性的工作,因为传统金属电极技术太厚(&500奈米),让光无法穿透,使它们无法与许多光学方法兼容。”
&&& 威斯康星大学麦迪逊分校生物医学工程和神经外科教授Justin Williams表示: “神经植入技术的一个圣杯是我们很想有一种植入式装置,而它不会与任何传统的影像诊断产生干扰。传统的植入技术看起来像是点的正方形,你看不到在它下面的任何东西。我们想做出一种透明的电子器件。”
&&& 传统的金属电极的技术(左上)会阻碍神经组织的视野。由DARPA的RE-NET计划所资助开发的新的石墨烯传感器技术是可以导电的,且只有4个原子厚,比目前的薄数百倍(上中)。这种极薄的厚度使几乎所有的光可以穿越很宽范围的波长。放置在一块与组织形状相符的柔性塑料里衬上之传感器(下方)是概念验证工具的一部分,它展示出了更小、更具透光性的触点,且可同时使用电气和光学方法来对神经组织进行测量与刺激(右上)。数据源:DARPA。
&&& 由于石墨烯的弹性和柔软性,以及其良好的导电性能,让它被选来当作新传感器的材料。且它对生物系统也是无毒的。威斯康星大学麦迪逊分校电气和计算器工程教授Zhenqiang (Jack) Ma指出,对材料的要求是要够薄且够坚固,才能在体内的环境下存活。放置在一块与组织(底部)形状相符的柔性塑料里衬上之石墨烯,“可在透明度、强度和导电率之间取得最佳的平衡” 。这款石墨烯传感器只有4个原子厚,这种极薄的厚度使几乎所有的光可以穿越很宽范围的波长,从紫外线到深红外线(deep infrared)。
&&& DARPA的项目经理Doug Weber 表示,“这项技术展示出了将大脑中神经网络活动可视化和量化的潜在突破能力。同时以大范围及快速的速度对电活动进行测量,并提供神经元网络解剖的直接可视化和调变的这种能力,可对大脑结构和功能之间的关系提供前所未见的洞察力,更重要的是,可以观察到这些关系是如何随着时间而发展,或受到损伤或疾病的困扰。”
&&& 该技术的应用包括神经系统、心脏监护,甚至是隐形眼镜(contact lens)。威斯康星大学麦迪逊分校的团队在与伊利诺伊州芝加哥大学的研究人员合作的情况下,便开发出了一款隐形眼镜的原型,这款原型包括了几十个看不见的传感器,可以用来检测视网膜受损的情况。伊利诺伊州芝加哥大学也在开发一种青光眼早期诊断的方法。
&&& 神经疾病与中风研究所的神经工程计划总监Kip Ludwig表示,另一个透明传感器可为其带来效益的应用领域是神经调节治疗,有愈来愈多的医生会使用神经调节治疗来对高血压、癫痫与帕金森氏病病患进行控制症状、恢复功能及舒缓病痛。他说:“尽管在这些疾病的神经调节临床试验上可以见到显著的改善,但我们对这些疗法是如何运作,及我们对改善现有或寻找新治疗方法的能力,仍处于早期的阶段。”
&&& Ludwig补充指出,对于直接观察身体如何产生电信号,以及它如何对外部产生的电信号产生反应,研究人员目前的能力是有限的。他说: “透明的电极(clear electrode)与进步的光遗传学和光电压技术的结合,将可使研究人员将那些生物机制隔离开来。这种基础性的知识可对现有神经调节治疗的大幅改善和找出新的治疗方法,产生催化的作用。”
&&& 引用资料:
&&& 1、维基百科
&&& 2、果壳网 魏郎尔 《石墨烯的时代,还没有到来》
技术资料出处:电子技术设计
该文章仅供学习参考使用,版权归作者所有。
因本网站内容较多,未能及时联系上的作者,请按本网站显示的方式与我们联系。
【】【】【】【】
上一篇:下一篇:
本文已有(0)篇评论
发表技术资料评论,请使用文明用语
字符数不能超过255
暂且没有评论!
12345678910
12345678910
硬件设计就是根据产品经理的需求PRS(ProductRequirementSpecification),在COGS(CostofGoodsSale)的要求下,利用目前业界成熟的芯片方案或者技术,在规定时间内完成符合PRS功能、性能、电源设计、功耗、散热、噪音、信号完整性、电磁...[][][][][][][][][][]
IC热门型号
IC现货型号
推荐电子百科

我要回帖

更多关于 石墨烯专用铜箔 的文章

 

随机推荐