DMA分配内存分配函数常用的几个函数

版权声明:开心源自分享,快乐源于生活 —— 分享技术,传递快乐。转载文章请注明出处,谢谢! /luckydarcy/article/details/

  我们都知道在用户空间动态申请内存用的函数是 malloc(),这个函数在各种操作系统上的使用是一致的,对应的用户空间内存释放函数是 free()。注意:动态申请的内存使用完后必须要释放,否则会造成内存泄漏,如果内存泄漏发生在内核空间,则会造成系统崩溃。
  那么,在内核空间中如何申请内存呢?一般我们会用到 kmalloc()、kzalloc()、vmalloc() 等,下面我们介绍一下这些函数的使用以及它们之间的区别。

  kmalloc() 申请的内存位于物理内存映射区域,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因为存在较简单的转换关系,所以对申请的内存大小有限制,不能超过128KB。
较常用的 flags(分配内存的方法):

  • GFP_ATOMIC —— 分配内存的过程是一个原子过程,分配内存的过程不会被(高优先级进程或中断)打断;
  • GFP_DMA —— 给 DMA 控制器分配内存,需要使用该标志(DMA要求分配虚拟地址和物理地址连续)。

 |– 进程上下文,可以睡眠     GFP_KERNEL
 |– 进程上下文,不可以睡眠    GFP_ATOMIC
 |  |– 中断处理程序       GFP_ATOMIC
 |  |– 软中断          GFP_ATOMIC
对应的内存释放函数为:

  kzalloc() 函数与 kmalloc() 非常相似,参数及返回值是一样的,可以说是前者是后者的一个变种,因为 kzalloc() 实际上只是额外附加了 __GFP_ZERO 标志。所以它除了申请内核内存外,还会对申请到的内存内容清零。

  vmalloc() 函数则会在虚拟内存空间给出一块连续的内存区,但这片连续的虚拟内存在物理内存中并不一定连续。由于 vmalloc() 没有保证申请到的是连续的物理内存,因此对申请的内存大小没有限制,如果需要申请较大的内存空间就需要用此函数了。

对应的内存释放函数为:

注意:vmalloc() 和 vfree() 可以睡眠,因此不能从中断上下文调用。

  1. 用于申请内核空间的内存;
  2. 内存以字节为单位进行分配;
  3. 所分配的内存虚拟地址上连续;
  1. kmalloc 可以保证分配的内存物理地址是连续的,但是 vmalloc 不能保证;
  2. kmalloc 分配内存的过程可以是原子过程(使用 GFP_ATOMIC),而 vmalloc 分配内存时则可能产生阻塞;

一般情况下,内存只有在要被 DMA 访问的时候才需要物理上连续,但为了性能上的考虑,内核中一般使用 kmalloc(),而只有在需要获得大块内存时才使用 vmalloc()。例如,当模块被动态加载到内核当中时,就把模块装载到由 vmalloc() 分配的内存上。

linux 内存是后台开发人员,需要深入了解的计算机资源。合理的使用内存,有助于提升机器的性能和稳定性。本文主要介绍 linux 内存组织结构和页面布局,内存碎片产生原因和优化算法,linux 内核几种内存管理的方法,内存使用场景以及内存使用的那些坑。从内存的原理和结构,到内存的算法优化,再到使用场景,去探寻内存管理的机制和奥秘。

1)内存又称主存,是 CPU 能直接寻址的存储空间,由半导体器件制成
2)内存的特点是存取速率快

1)暂时存放 cpu 的运算数据
2)硬盘等外部存储器交换的数据
3)保障 cpu 计算的稳定性和高性能

二、 linux 内存地址空间

2、内存地址——用户态&内核态

  • 用户态:Ring3 运行于用户态的代码则要受到处理器的诸多
  • 内核态:Ring0 在处理器的存储保护中,核心态
  • 用户态切换到内核态的 3 种方式:系统调用、异常、外设中断
  • 区别:每个进程都有完全属于自己的,独立的,不被干扰的内存空间;用户态的程序就不能随意操作内核地址空间,具有一定的安全保护作用;内核态线程共享内核地址空间;

3、内存地址——MMU 地址转换

  • MMU 是一种硬件电路,它包含两个部件,一个是分段部件,一个是分页部件
  • 分段机制把一个逻辑地址转换为线性地址
  • 分页机制把一个线性地址转换为物理地址

4、内存地址——分段机制

  • 为了方便快速检索段选择符,处理器提供了 6 个分段寄存器来缓存段选择符,它们是: cs,ss,ds,es,fs 和 gs
  • 段的基地址(Base Address):在线性地址空间中段的起始地址
  • 段的界限(Limit):在虚拟地址空间中,段内可以使用的最大偏移量
  • 逻辑地址的段寄存器中的值提供段描述符,然后从段描述符中得到段基址和段界限,然后加上逻辑地址的偏移量,就得到了线性地址

5、内存地址——分页机制(32 位)

  • 分页机制是在分段机制之后进行的,它进一步将线性地址转换为物理地址
  • 10 位页目录,10 位页表项, 12 位页偏移地址
  • TEXT:代码段可执行代码、字符串字面值、只读变量
  • DATA:数据段,映射程序中已经初始化的全局变量
  • BSS 段:存放程序中未初始化的全局变量
  • HEAP:运行时的堆,在程序运行中使用 malloc 申请的内存区域
  • MMAP:共享库及匿名文件的映射区域
  • STACK:用户进程栈
  • 直接映射区:线性空间中从 3G 开始最大 896M 的区间,为直接内存映射区
  • 动态内存映射区:该区域由内核函数 vmalloc 来分配
  • 永久内存映射区:该区域可访问高端内存
  • 固定映射区:该区域和 4G 的顶端只有 4k 的隔离带,其每个地址项都服务于特定的用途,如: ACPI_BASE 等
  • 用户进程通常情况只能访问用户空间的虚拟地址,不能访问内核空间虚拟地址
  • 内核空间是由内核负责映射,不会跟着进程变化;内核空间地址有自己对应的页表,用户进程各自有不同额页表

三、 Linux 内存分配算法

内存管理算法——对讨厌自己管理内存的人来说是天赐的礼物

  • 产生原因:内存分配较小,并且分配的这些小的内存生存周期又较长,反复申请后将产生内存碎片的出现
  • 优点:提高分配速度,便于内存管理,防止内存泄露
  • 缺点:大量的内存碎片会使系统缓慢,内存使用率低,浪费大

2) 如何避免内存碎片

  • 少用动态内存分配的函数(尽量使用栈空间)
  • 分配内存和释放的内存尽量在同一个函数中
  • 尽量一次性申请较大的内存,而不要反复申请小内存
  • 尽可能申请大块的 2 的指数幂大小的内存空间
  • 外部碎片避免——伙伴系统算法
  • 内部碎片避免——slab 算法
  • 自己进行内存管理工作,设计内存池

2、伙伴系统算法——组织结构

  • 为内核提供了一种用于分配一组连续的页而建立的一种高效的分配策略,并有效的解决了外碎片问题
  • 分配的内存区是以页框为基本单位的
  • 外部碎片指的是还没有被分配出去(不属于任何进程),但由于太小了无法分配给申请内存空间的新进程的内存空闲区域
  • 把所有的空闲页分组为 11 个块链表,每个块链表分别包含大小为 1,2,4,8,16,32,64,128,256,512 和 1024 个连续页框的页块。最大可以申请 1024 个连续页,对应 4MB 大小的连续内存

3、伙伴系统算法——申请和回收

  • 申请 2^i 个页块存储空间,如果 2^i 对应的块链表有空闲页块,则分配给应用
  • 如果没有空闲页块,则查找 2^(i 1) 对应的块链表是否有空闲页块,如果有,则分配 2^i 块链表节点给应用,另外 2^i 块链表节点插入到 2^i 对应的块链表中
  • 如果 2^(i 1) 块链表中没有空闲页块,则重复步骤 2,直到找到有空闲页块的块链表
  • 如果仍然没有,则返回内存分配失败
  • 释放 2^i 个页块存储空间,查找 2^i 个页块对应的块链表,是否有与其物理地址是连续的页块,如果没有,则无需合并
  • 如果有,则合并成 2^(i 1)的页块,以此类推,继续查找下一级块链接,直到不能合并为止
  • 它们的物理地址是连续的

4、如何分配 4M 以上内存?

1) 为何限制大块内存分配

  • 分配的内存越大, 失败的可能性越大

2) 内核中获取 4M 以上大内存的方法

  • 内核启动选型传递"mem="参数, 如"mem=80M,预留部分内存;然后通过
  • vmalloc 函数,内核代码使用它来分配在虚拟内存中连续但在物理内存中不一定连续的内存

5、伙伴系统——反碎片机制

  • 这些页在内存中有固定的位置,不能够移动,也不可回收
  • 内核代码段,数据段,内核 kmalloc() 出来的内存,内核线程占用的内存等
  • 这些页不能移动,但可以删除。内核在回收页占据了太多的内存时或者内存短缺时进行页面回收
  • 这些页可以任意移动,用户空间应用程序使用的页都属于该类别。它们是通过页表映射的
  • 当它们移动到新的位置,页表项也会相应的更新

6、slab 算法——基本原理

  • 它的基本思想是将内核中经常使用的对象放到高速缓存中,并且由系统保持为初始的可利用状态。比如进程描述符,内核中会频繁对此数据进行申请和释放
  • 已经被分配出去的的内存空间大于请求所需的内存空间
  • 减少伙伴算法在分配小块连续内存时所产生的内部碎片
  • 将频繁使用的对象缓存起来,减少分配、初始化和释放对象的时间开销
  • 通过着色技术调整对象以更好的使用硬件高速缓存

7、slab 分配器的结构

  • 由于对象是从 slab 中分配和释放的,因此单个 slab 可以在 slab 列表之间进行移动
  • slab 还支持通用对象的初始化,从而避免了为同一目而对一个对象重复进行初始化
  • slab 分配器所提供的小块连续内存的分配是通过通用高速缓存实现的
  • 通用高速缓存所提供的对象具有几何分布的大小,范围为 32 到 131072 字节。
  • 内核中提供了 kmalloc() 和 kfree() 两个接口分别进行内存的申请和释放
  • 内核为专用高速缓存的申请和释放提供了一套完整的接口,根据所传入的参数为具体的对象分配 slab 缓存
  • kmem_cache_create() 用于对一个指定的对象创建高速缓存。它从 cache_cache 普通高速缓存中为新的专有缓存分配一个高速缓存描述符,并把这个描述符插入到高速缓存描述符形成的 cache_chain 链表中
  • 先申请分配一定数量的、大小相等(一般情况下) 的内存块留作备用
  • 当有新的内存需求时,就从内存池中分出一部分内存块,若内存块不够再继续申请新的内存
  • 这样做的一个显著优点是尽量避免了内存碎片,使得内存分配效率得到提升
  • 直接内存访问是一种硬件机制,它允许外围设备和主内存之间直接传输它们的 I/O 数据,而不需要系统处理器的参与
  • 能向 CPU 发出系统保持(HOLD)信号,提出总线接管请求
  • 当 CPU 发出允许接管信号后,负责对总线的控制,进入 DMA 方式
  • 能对存储器寻址及能修改地址指针,实现对内存的读写操作
  • 能决定本次 DMA 传送的字节数,判断 DMA 传送是否结束
  • 发出 DMA 结束信号,使 CPU 恢复正常工作状态
  • DREQ:DMA 请求信号。是外设向 DMA 控制器提出要求,DMA 操作的申请信号
  • DACK:DMA 响应信号。是 DMA 控制器向提出 DMA 请求的外设表示已收到请求和正进行处理的信号
  • HRQ:DMA 控制器向 CPU 发出的信号,要求接管总线的请求信号。
  • HLDA:CPU 向 DMA 控制器发出的信号,允许接管总线的应答信号:

out of memory 的时代过去了吗?no,内存再充足也不可任性使用。

  • 用户态内存使用(malloc、relloc 文件映射、共享内存)
  • 内存映射(硬件寄存器、保留内存)

2、用户态内存分配函数

  • alloca 是向栈申请内存,因此无需释放
  • malloc 所分配的内存空间未被初始化,使用 malloc() 函数的程序开始时(内存空间还没有被重新分配) 能正常运行,但经过一段时间后(内存空间已被重新分配) 可能会出现问题
  • calloc 会将所分配的内存空间中的每一位都初始化为零
  • realloc 扩展现有内存空间大小
    a) 如果当前连续内存块足够 realloc 的话,只是将 p 所指向的空间扩大,并返回 p 的指针地址。这个时候 q 和 p 指向的地址是一样的
    b) 如果当前连续内存块不够长度,再找一个足够长的地方,分配一块新的内存,q,并将 p 指向的内容 copy 到 q,返回 q。并将 p 所指向的内存空间删除
  • mmap 将一个文件或者其它对象映射进内存,多进程可访问

3、内核态内存分配函数

适用于分配较大量的连续物理内存
适合需要频繁申请释放相同大小内存块时使用
最常见的分配方式,需要小于页框大小的内存时可以使用
建立非连续物理内存到虚拟地址的映射 物理不连续,适合需要大内存,但是对地址连续性没有要求的场合
实现已知物理地址到虚拟地址的映射 适用于物理地址已知的场合,如设备驱动
在启动 kernel 时,预留一段内存,内核看不见 小于物理内存大小,内存管理要求较高
  • 调用 malloc 函数时,它沿 free_chuck_list 连接表寻找一个大到足以满足用户请求所需要的内存块
  • free_chuck_list 连接表的主要工作是维护一个空闲的堆空间缓冲区链表
  • 如果空间缓冲区链表没有找到对应的节点,需要通过系统调用 sys_brk 延伸进程的栈空间
  • 将 addr 对应的 pte 设置为物理页面的首地址
  • 系统调用:Brk—申请内存小于等于 128kb,do_map—申请内存大于 128kb

6、用户进程访问内存分析

  • 用户态进程独占虚拟地址空间,两个进程的虚拟地址可相同
  • 在访问用户态虚拟地址空间时,如果没有映射物理地址,通过系统调用发出缺页异常
  • 缺页异常陷入内核,分配物理地址空间,与用户态虚拟地址建立映射
  • 它允许多个不相关的进程去访问同一部分逻辑内存
  • 两个运行中的进程之间传输数据,共享内存将是一种效率极高的解决方案
  • 两个运行中的进程共享数据,是进程间通信的高效方法,可有效减少数据拷贝的次数
  • shmat 启动对该共享内存的访问,并把共享内存连接到当前进程的地址空间
  • shmdt 将共享内存从当前进程中分离

  • 在类的构造函数和析构函数中没有匹配地调用 new 和 delete 函数
  • 没有正确地清除嵌套的对象指针
  • 没有将基类的析构函数定义为虚函数
  • 当基类的指针指向子类对象时,如果基类的析构函数不是 virtual,那么子类的析构函数将不会被调用,子类的资源没有得到正确释放,因此造成内存泄露
  • 缺少拷贝构造函数,按值传递会调用(拷贝)构造函数,引用传递不会调用
  • 指向对象的指针数组不等同于对象数组,数组中存放的是指向对象的指针,不仅要释放每个对象的空间,还要释放每个指针的空间
  • 缺少重载赋值运算符,也是逐个成员拷贝的方式复制对象,如果这个类的大小是可变的,那么结果就是造成内存泄露
  • 指针操作超越了变量的作用范围,比如返回指向栈内存的指针就是野指针
  • 访问空指针(需要做空判断)
  • sizeof 无法获取数组的大小
  • 多线程共享变量没有用 valotile 修饰
  • 多线程访问全局变量未加锁
  • 全局变量仅对单进程有效
  • 多进程写共享内存数据,未做同步处理
  • mmap 内存映射,多进程不安全

4、STL 迭代器失效

  • 添加元素(insert/push_back 等)、删除元素导致顺序容器迭代器失效

错误示例:删除当前迭代器,迭代器会失效

正确示例:迭代器 erase 时,需保存下一个迭代器

a. lock() 获取所管理的对象的强引用指针
b. expired() 检测所管理的对象是否已经释放

用 hash 实现的无序的容器,插入、删除和查找的时间复杂度都是 O(1),在不关注容器内元素顺序的场合,使用 unordered 的容器能获得更高的性能

  • 查询内存总使用率:free
  • 查询进程 cpu 和内存使用占比:top
  • 虚拟内存统计:vmstat
  1. DMA技术的出现,使得外围设备可以通过DMA控制器直接访问内存,与此同时,CPU可以继续执行程序.那么DMA控制器与CPU怎样分时使用内存呢?通常采用以下三种方法:(1)停止CPU访内;(2)周期挪用;(3)DMA与CPU交替访内存.1.停止CPU访问内存当外围设备要求传送一批数据时,由DMA控制器发一个停止信号给CPU,要求CPU放弃对地址总线、数据总线和有关控制总线的使用权.DMA控制器获得总线控制权以后,开始进行数据传送.在一批数据传送完毕后,DMA控制器通知CPU可以使用内存,并把总线控制权交还给CPU是这种传送方式的时间图.很显然,在这种DMA传送过程中CPU基本处于不工作状态或者说保持状态.优点: 控制简单,它适用于数据传输率很高的设备进行成组传送.缺点: 在DMA控制器访内阶段,内存的效能没有充分发挥,相当一部分内存工作周期是空闲的。这是因为,外围设备传送两个数据之间的间隔一般总是大于内存存储周期,即使高速I/O设备也是如此。例如,软盘读出一个8位二进制数大约需要32us,而半导体内存的存储周期小于0.5us,因此许多空闲的存储周期不能被CPU利用.2.周期挪用:当I/O设备没有DMA请求时,CPU按程序要求访问内存;一旦I/O设备有DMA请求,则由I/O设备挪用一个或几个

    内存周期。I/O设备要求DMA传送时可能遇到两种情况:(1)此时CPU不需要访内,如CPU正在执行乘法指令。由于乘法指令执行时间较长,此时I/O访内与CPU访内没有冲突,即I/O设备挪用一二个内存周期对CPU执行程序没有任何影响。(2)I/O设备要求访内时CPU也要求访内,这就产生了访内冲突,在这种情况下I/O设备访内优先,因为I/O访内有时间要求,前一个I/O数据必须在下一个访内请求到来之前存取完毕。显然,在这种情况下I/O 设备挪用一二个内存周期,意味着CPU延缓了对指令的执行,或者更明确地说,在CPU执行访内指令的过程中插入DMA请求,挪用了一二个内存周期。与停止CPU访内的DMA方法比较,周期挪用的方法既实现了I/O传送,又较好地发挥了内存和CPU的效率,是一种广泛采用的方法。但是I/O设备每一次周期挪用都有申请总线控制权、建立线控制权和归还总线控制权的过程,所以传送一个字对内存来说要占用一个周期,但对DMA控制器来说一般要2—5个内存周期(视逻辑线路的延迟而定)。因此,周期挪用的方法适用于I/O设备读写周期大于内存存储周期的情况。3.DMA与CPU交替访内如果CPU的工作周期比内存存取周期长很多,此时采用交替访内的方法可以使DMA传送和CPU同时发挥最高

经验内容仅供参考,如果您需解决具体问题(尤其法律、医学等领域),建议您详细咨询相关领域专业人士。

我要回帖

更多关于 内存分配函数 的文章

 

随机推荐