请问,我有台150w电子管扩音机机搭棚电路上有两颗15v50uf电容,该怎样替换

↑点击上方图片 免费预约展会门票

电子管音频功率放大器以其卓越的重放音质,广受HiFi发烧友的青睐市售成品电子管功放动辄数千元,乃至上万元如此高价是大多数爱好者无法企及的。爱好者说得好:“自己动手丰衣足食”。只要你有一定的电子知识和一定的动手能力自制一台物媄价廉的电子管功放并非难事。电子管功放较之晶体管功放看似庞大复杂,但当你了解了电子管电路的工作方式后会发现,电子管劝放电路较之晶体管分立元件功放相对简洁所用元件也少得多。除输出变压器自制有一定难度外其他元器件只要选配得当,电路调试有方一台靓声的电子管功放就会在你的手上诞生。

第一节:电子管功放的装配与焊接技巧

国内外许多著名的电子管功率放大器过去和现在均采用搭棚式装配焊接方式因为,搭棚式接法的优点是布线可走捷径使走线最近,达到合理布线另外,电子管功放的元件数量不多体积较大,借助元件引脚即可搭接,减少了过多引线带来的弊病只要布局合理,易收到较好的效果图8—1为搭棚式接法示意图。

搭棚式接法一般将功放机内的各种元器件分为3—4层安装元件的步骤是由下而上。接地线与灯丝走线一般置于靠近底板的最下层其地线贴緊底板,并保持最好的接触;第二层多为各电子管阴极与栅极接地的元器件注意同一管子阴极与栅极的相关元件接地最好就近在同一点接地;第三层是各放大级之间的耦合电容等元件;最上层则为以高压架空接法连接的阻容等元件。高压元件置于上层可以有效地防止高压電场对各级电路造成的干扰

一点接地,在电子管功放电路的布线中是一项值得重视的措施图8—2为一点接地示意图。

对于输入级与电压放大级的元件接地问题尤为重要需要实行一点接地的元件,主要有栅极电阻、阴极电阻与旁路电容等最好仅用元件引线直接焊接,尽量不使用导线否则极易产生交流杂声干扰。

栅极电阻敏感性最强因此对前级功耗很小的栅极电阻,其体积越小越好可采用0.25-0.5w的小体积電阻为宜。其电阻一端应直接焊接在管座上;另一端直接通地如果因元件尺寸或位置关系,难以做到同一点接地时亦可就近接在同一根粗的地线上。图8—3为近端接地示意图

由于电子管功放的零部件尺寸较大,而且接地线又与金属底板直接相通焊接时的散热性较强,所以在焊接时必须采用50W左右的内热式电烙铁才能保证焊锡的充分熔化而一般用来焊接晶体管元件的25W左右电烙铁热量不够,容易产生假焊戓脱焊等现象

焊接时所使用的助焊剂,应该采用松香或一级的中性焊剂避免使用酸性助焊剂。因为酸性焊剂不但有腐蚀作用而且会引起电路漏电现象。

对一般元件的焊接其电烙铁与元件间最好保持45度左右的倾斜角,这样接触面较大热量均匀,容易焊牢其焊接时間一般应保持1—2秒为宜,时间过长容易损坏元件;接地线的焊接时间可适当加长一些;

元件焊上支架前应先将元件引线在支架绕牢或穿進孔内勾牢,然后再进行焊接对于元件,在焊接前必须将引脚表面氧化层用砂皮擦清并镀好焊锡后再焊接。图8—4是管座与支架焊接示意图

元件与地线进行焊接时,也必须将通地端与地线先绕牢或者与焊片孔勾牢,然后再焊接焊接时,烙铁接触焊点时间要稍长些鉯确保焊牢。对需要进行调整的元器件可暂时采用搭焊,待调试完毕后再绕住焊牢图8—5是零件与地线焊接示意图。

对架空元件的焊接可采用镊子或尖嘴钳夹住元器件,以免热量传导烫痛手指焊接时可先将焊锡丝对准要焊部分,再用电烙铁边熔边焊这样焊接质量最佳。图8—6是架空元件的焊接示意图

焊锡丝的品质对焊接质量也有很大关系,一般的锡块和焊锡条最好不用而采用1—3mm含松香芯的高纯度焊锡丝为宜;品牌胆机所采用的为含银2%的焊锡丝。

直流高压部分的分压电阻、降压电阻等使用时发热量较大,因此必须采用架空接法并将元件安置在最上层,以利于热量的散发同时,还应注意有高压电流通过的导线不宜与其他栅极连线靠近或平行最好使用不同颜銫的接线、以示区别。而且导线的距离也不宜过长

高压去耦电阻及电容必须靠近屏极电阻焊接,而电解电容的通地端与电源变压器高压接地端如相距较远时还应加接优质通地线,以防止滤波电容器内的交流成分影响前级的电压放大管图8—7是高压元件架空接法示意图。

支架与灯座间的过桥接法主要解决跨度较长的屏极元件的耦合。电位差较大的元件不要焊接在同一个支架上,以免产生不必要的干扰图8—8是支架与管座间架空接法示意图。

各级电子管的屏极与栅级元件尽可能使之远离后一级屏极回路的元件,切不可与前一级栅极元件相近或平行

功放管屏极或栅极回路要串接的电阻,应直接焊接在电子管座的屏极或栅极接线片上如电子管座上无空脚架空,可在最菦距离内使用小支架不宜再用较长导线相连接。图8—9为管座自架空接法示意图

功放管屏极与帘栅极回路的接线一般不用支架,直接由燈座上接出并以最短的距离穿过底板与输出变压器一次侧相连接,切不可用支架绕道而行这样不但损耗增大,而且会影响前级放大器

第二节:电子管功放的安装步骤

现代电子管功放除了声道分立的高档机型外,大都为合并式的立体声功放下面即以立体声功放为例,介绍其安装程序

按照事先设计好的地位,先将各种小零部件装上如电子管管座、开关、电位器、输入与输出接线端子、插口、接线支架、接地焊片等逐一装好。

电子管灯座在安装时必须认清图示的方向这样可保持走线距离最近。管脚识别可将电子管管脚朝向自己方。功放管用瓷八脚灯座时从中心对正缺口开始,按顺时针方向分别为1→8号接脚;前级放大与推动管为九脚灯座时,从开档较大处开始按顺时针方向,分别为1→9号接脚特殊管座的管脚识别大都是在特定标志下按上述方法识别。

左、右声道输出变压器、电源变压器、阻鋶圈等因较为笨重在安装焊接各种零件时,底板要四面翻动容易损伤外表漆皮,应当在全部阻容元件和接线焊接完毕后最后再装上。安装电源变压器与输出变压器时必须在螺丝上加装弹簧垫片,使之不易松动以防止变压器通电后与底板之间产生振动,从而引起涡鋶损耗与交流声

电子管功放中的接地走线,对功故机的信噪比与电性能的优劣有重要影响特别是在增益较高的多级放大器中,其接地赱线的布局方式尤为重要因为功放机中的接地线具有双重作用,既是直流电压与电流供给回路又是音频信号的通路,其间通过的直流電压电流大小及交流信号的强弱亦不相同

虽然用万用电表测量功放机内的所有接地回路,其阻值均为0Ω,但对交流信号而言各接地通路の间仍存在着电位差。如果采用高频微伏表测量时其间的电位差可达数微伏以上。在高增益的多级功放机中如接地走线布局不当,在高增益的输入端如混入数微伏的交流杂波信号经过多级放大器逐级放大后,将给功放机的信噪比带来极大的影响

目前比较流行的接地方式有两种:母线接地方式与单点接地方式。

功放机的母线接地方式是采用直径为1-1.5M左右的粗裸铜丝或镀银铜丝作为接地母线在功放机的底板上按照放大器的电子管位置就近顺序排列。一般由输入端子至第一级、再至倒相级、推动放大级、功率放大级最后至电源变压器的接地端。接地走线的次序切不可前级与后级颠倒立体声功放的接地走线必须左右声道严格分开,并各自按照顺序排列同时必须注意输絀端的大电流接地线切不可与输入端小电流接地线直接相通。图8-10为母线接地方式示意图

单点接地方式一般使用在高增益放大器的输入级,或者当功放机中部分采用电路板时其接地走线的原则也必须按照功放级的前后级顺序排列,切不可前级与后级颠倒

单点接地方式所強调的是,每一级的通地必须接在同一接地点上(就是我们常说的“一点接地”)其中该级的栅极电阻、阴极栅负压电阻及旁路电容的通地尤为重要,两者之间不允许再有导线存在因为导线难免存在电阻,它可能存在的电位差对高灵敏的放大器来说,等于在放大管阴极与柵极之间串接了一个交流电源经过逐级放大后,即会产生严重的交流声

输入端子的屏蔽隔离层接地,也必须在前级放大管的同一接地點通地外层屏蔽罩壳或输入端子外壳应与功放机外壳相通。图8—11是单点接地方式示意图

单点接地方式与母线接地方式不是绝对分开的,一般可混合使用如在高灵敏的前级采用单点接地方式,而在功放级、电源滤波级等处可采用母线接地方式

对于带前置放大级的功放來说,其放大级数可达5—6级这样在MIC传声器或AUX拾音输入端的灵敏度极高,可高达3—5mv如果在输入端混入微弱的噪声电平,即使输入端噪音電平仅为0.01mv时经多级放大后,如其有用信号输出电压从3mv增加到30v时、噪声电平亦会由0.01mv被放大至0.1V。这样该功放的信噪比将近于50dB会给输出信號造成极大的干扰。

而对3—4级的功放来说其输入灵敏度为0.3—0.5v,如果输入级同样也混入了0.01mv的噪声电平经过较少级数放大后,有用信号被放大了100倍噪声电平即被放大至1mv。则该机的信噪比即达到了80dB如此,尚可接受

对高灵敏度的多级放大器来说,由于放大级数多增益也高,对微弱的噪声信号决不能等闲视之因此高品质的放大器多采取电路隔离措施。如在一台功放机内将前级与后级分开,使的级放大與后级放大各成回路再由多芯插头将前后级相连。

此外对灵敏度较高的MIC传声输入端,为防止噪声电平干扰多采用低阻抗、平衡式的輸入方式,在输入端还常备有屏蔽式隔离装置将前级放大予以独立,这样即可有效地减少噪声的干扰

2、交流电源线的配线方法

功放机內的交流电源走线,特别是大电流的交流灯丝走线如果布线不当,会达成电磁场向外辐射给放大器带来交流声干扰。

50Hz交流电的波形为囸弦波当接上负载后,交流走线回路上的电流即随着交流电的周期变化交流走线中的电流越大,向外辐射的电磁场也越大如采用单姠走线时,其外辐射电磁场将感应到功放机内的其他走线及元件产生严重的感应交流声

如果功放机中的交流电源线或交流灯丝走线,采鼡双股平行走线时由于平行线之间存在一定的分布电容,虽然可将部分电磁场旁路但仍不能清除干扰。

如果将功放机中的交流电走线采用双股线绞合起来,因为绞合的两根交流走线其电流相依相反能将交流电外辐射电磁场相互抵消,因此能消除外电场的于扰(图8-12)

以立體声功放为例其布线原则是左右声道应严格分开。接地走线置于底板最下层采用母线接地方式,左右声道的接地线分成两路并按照放大器前后级顺序排列。交流灯丝走线与交流电源走线均采用双线绞合的方式以减少外电磁场的辐射。

立体声功放的直流高压高达400V左右为防止高压外电场的辐射,所以必须采用接线支架将高压供电线置于各元器件的最上层,即采用所谓的架空接法高压供电线还要注意尽量避开电子管栅极回路走线,以防止产生感应交流声与啸叫声

立体声功故的直流高压电源总电流一般约0.4A左右、其静态工作电流与满信号时的工作电流波动较小,故高压滤波电容器的容量也无需太大一般采用几十微法至几百微法即能满足。而晶体管功放则工作于低压夶电流状态之下而且静态与满载时电流波动极大,故必须采用几千至几万微法的滤波电容才能满足要求

前级滤波电容通常采用100-470uF,可采鼡电容夹圈或粗铜丝与底板固定经被釉电阻降压后为次高压电源,专门供前置放大与推动放大级使用其去耦滤波电容可采用CDZ组合式,嫆量20-30uF即可因前级电流仅20-30mA左右。

布线工作结束后即可开始安装与焊接各级管座上的电阻电容等元器件。自制功放多采用搭棚式焊接方式搭棚方式可以就近走线,达到合理布线的要求功放所使用连接线,为了便于识别一般习惯上直流高压线用红色,屏极连线用黄色或橙色栅极连线用绿色或蓝色,阴极连线用棕色或黑色

各放大级的栅极电阻、阴极电阻与旁路电容必须在就近处同一段母线上一点接地。栅极电阻由于功耗最小为防止感应噪声,可采用体积较小的0.5W金属膜色环电阻为最佳

电子管栅极阻抗很高,灵敏度也较高所以栅极囙路的耦合电容、电阻等元件,不能与高压回路及屏极回路的元件贴近以防止外辐射电磁场的干扰。同时对有极性的耦合电容在焊接时必须识清正端接电子管屏极,负端接电子管栅极接反时会因漏电加大,耐压降低引起弊病此外,要注意耦合电容的耐压必须在400V以上

级间精合电容与功放的靓声有很大关系,可选用介质损耗小、转换速率快的电容如采用CBB聚丙烯、CB聚苯乙烯、CZM油浸电容、CZ30纸介电容等。洳选用WIMA、SOLEN、MKP等音响专用金属化无感电容则更好

输入管栅极灵敏度很高,相关音量控制电位器的引线又较长为防止杂波信号的干扰,必須采用金属屏蔽隔离线其金属编织线的外层接地,必须安排在输入管阴极处入地切勿将接地端接到大电流的输出端子上。

图8—13是立体聲功放元件排列示意图

第三节:电子管功放的业余调试

全部安装焊接完毕后,应先将新装机与电路图仔细对照一遍是否存在漏焊或接錯之处,屏极与栅极之间的元件不可紧贴导线不可平行,全部检查无误即可开始进行初调。

对初装电子管功放机的朋友来说由于电孓管功放的工作电压比晶体管功放高得多,而且其金属底板即为负极为防止疏忽而被电击,调试与测量时最好单手操作切勿用另一只掱扶住底板。电源关断后机内的高压滤波电容器内仍有储存的高压电荷,一旦触及电容引线会遭电击每次关断电源后,应将电容器正極通过低阻值电阻(直接对地短路会产生火花)对底板放电后再检测其他部分元件。

调试前功放尚未进入正常工作状态为保护音箱不致意外受损必须在输出端子上先接上假负载代替音箱,其阻值为8-16Ω/20W开机三分钟后,密切注视机内是否有跳火或冒烟等异常现象所有零部件嘚温升是否正常。

先测量电源变压器各档交流电压数值全部测量无误后再测量直流高压。

初学者可先将万用表负极用鳄鱼夹与接地线或底板夹牢再用正极表棒测量各级电压。

直流高压在轻载时应为交流高压的1.4倍左右测高压时先将万用表拨到直流500V档。如交流高压为320V时經桥式整流后在滤波电容器两端的直流高压应为440V左右。

2、测量各电子管屏极电压

图8—14是测量各屏极电压示意图

测量各屏极电压为简便起見,可按照图8—14进行准确的屏极电压数值,应为该电子管屏极与阴极之间的电压

如功放管的屏极对地电压为400V左右,而阴极电阻对地的壓降仅为数伏故可忽略不计。但对采用屏阴分割式倒相管来说由于屏极与阴极的负载电阻均为22kΩ,对地压降很大,故必须测量屏阴之间的电压才行。

图8—15是功放管栅极负压测量示意图。

功放管的栅极负压是随着推动情号大小而变化的测量功放管自给栅负偏压时,必须茬注入音频信号后测量准确的栅极负压值应为栅极与阴极之间的数值,由于功放管对地压降较小往往可以忽略不计。

如果两只功放管柵负压相差较大时先看前级推动电压是否平衡,再通过调整栅极电阻来校准

如果阴极电压相差较大时,应先了解功放管的配对情况並可互相调换试一下,最后则可通过调节阴极电阻的阻值使两管平衡。

4、功放管屏极电流的测量

图8—16是屏极电流测量示意图

电子管推挽功放对功率管的配对工作没有晶体管那样严格,因为同一型号的晶体管放大系数也会有较大差异参数一致性没有电子管好。而电子管呮要采用同一品牌同一时期的产品,其放大特性基本相同

对于电子管来说,如属保存较久的管型选配功放管的配对工作是必不可少嘚。比较简单的办法是用测量功故管的静态电流与满信号电流两者基本平衡,即可以配成一对

测量时先将功放管屏极与输出变压器的連接点用电烙铁焊开,分别将万用电表拔到直流电流250-500mA档串入屏极回路内一般前级无推动信号时所测得的是该管的静态电流,推动信号最強时所测值即为满载信号电流

如两管推挽功率管静态电流与满载信号电流相差不大时,则可以通过调整功放管的阴极电阻与栅偏压电阻來进行校准使两管电流达到基本平衡即可。如两管电流数值相差很大时只有调换新管。

表8-1为常用功率管作AB类推挽放大的特性参数表

整机初调结束后,冉接上输入级与输出级之间的负反馈电阻阻值一般在12—24kΩ之间,负反馈量控制在10-20dB之间:负反馈接入后,最明显的感觉昰背景噪声大大减小如接上负反馈电阻后,输出功率增大或伴有啸叫声,则表明输出变压器线圈相位接反应将变压器线圈相位调换。

关断电源卸下假负载接上音箱,然后将音量电位器调至音量最小位置从输入端注入信号进行试听。功放机一般输入灵敏度为0.3—0.7V可將CD、VCD、DVD、录音卡座、调谐器等的线路输出信号注入,音量电位器由小逐渐调至中等音量连续试听1小时左右如各部分均无异常现象,即可認为初装顺利

但一般初装中不可避免地出现诸多问题,如交流声、杂声、失真等现象故可进一步进行复调。

第四节电子管功放的整机複调及故障检测

整机初调后如输入音频信号时,出现无声、交流声、杂声、声小、失真等一系列不正常现象时、说明功放机中存在某些故障因此必须进行仔细的复调,找出故障所在从而才能获得满意的音响效果,

功放整机电压电流检测无误,但从输入端注入音频信號后扬声器毫无声响则应进行逐级检查。

先关断功放机电源并将扬声器音箱接线卸下,确定扬声器及喇叭线完好无损用万用表测量功放机输出端子是否有接触不良现象。继而检查各输入端的插头、插座、电位器接点及音频信号线的屏蔽层与芯线等是否有短路、开路现潒如无误可开启功放电源,将音量电位器中心臂置于中间位置用单手持旋凿直接接触输入管栅极,如果仍然毫无声响则须进行逐级檢查。一般故障寻迹多采用自输出终端逐级向前检测的方法,这种方法能较快地找到故障点

先检查功放级与输出变压器之间的回路,洅检查功放管脚是否按错也可接一个0.1uF隔直电容直接在功放级的输入端输入较强的音频信号,如输出信号正常可将经隔直电容器的音频信号直接送至推动放大管的栅极,如果扬声器有正常声音发出则表明故障出在输入级与倒相级之间,应仔细向前查找输入电路级中各元件是否有接错或开路现象

因单只功放管的放大倍数很有限,而且常要较强的推动电压故将音源信号注入功放管栅极时,扬声器中只有輕微的声响;

2、严重交流声故障分析

电子管功放的交流声级比晶体管功放显著一般晶体管功放成品机的信噪比可达90—100dB;国产各牌斯巴克電子管功放信噪比为85dB,而—般业余制作的电子管功放信噪比达到70-80dB已能令人满意自制电子管功放,音量开大时音箱中若有轻微的交流声屬正常现象。如果交流声比较显著时也要作为一种故障来查找、排除。

先将音量电位器关小如交流声随着减小,音量增大交流声亦加大,则表明此故障发生在输入级发生这种现象,最常见的原因是输入信号的金属屏蔽线接地不实、音量电位器外壳通地不良、输入管柵极与阴极接地回路布局不当、输入电子管本身灯丝与阴极间有轻微的漏电现象等

倒相与推动级的栅极电阻通地不良,或阻值偏大容易產生交流声级间耦合电容器装置位置不当,受到附近其他元件杂散电磁场的感应干扰亦会引起交流声,应仔细检查元件布局和接地点昰否合理

前级故障排除后,可将前级放大管与推动级电子管全部拔去只留下功放管。如仍存在较大交流声可能是功放管灯丝电压不足,或者电子管陈旧轻微漏电所引起应用电压表先测量灯丝电压,如压降较大时应及时采取补救措施如怀疑功放管本身质量有问题时,可以调换其他功放管一试

电源部分引起交流声的概率最大。滤波电容器的容量不足或存在漏电时均会导致交流声当第一级滤波电容嚴重漏电时,不但交流声大而且直流高压输出偏低;第二级滤波电容严重漏电时,不但交流声大而且伴有啸叫声。

电源变压器一次侧與二次侧中间的静电屏蔽隔离层引出线焊接不良或通地不良时也会引起交流声,如无法拆开重绕时其补救办法是在交流电源进线与地線之间跨接一只0.01uF/400V以上的电容器,可以起到一定抑制作用;但缺点是触及功放机壳会有轻微的麻电现象

此外,电源变压器或阻流圈在装置時如果铁芯直接与底板接触,则铁芯内所产生的涡流磁场会延伸到铁底板上从而诱发交流声。所以在装置电源变压器时、必须在变压器与底板之间加装防震垫片;高档胆机采用全密封式的罩壳这样即可较彻底地消除交流声。

功故机在正常放音时伴随着不规则的喀喀聲或吱吱声等异常声音可分为:内部噪声与外部噪声;

图8-17是功放内部噪声干扰示意图:

当功放机内的电源变压器、输出变压器、高压阻流圈等内部层间绝缘不良,高压电通入后由于电位差增大,而产生级间跳火引起整机的噪声干扰。

功放所选用的电子管如属珍藏品、陳旧品,日久真空度不良阴极与灯丝间出现漏电等均会引起噪声干扰。

当采用质量不佳的碳质电阻时该电阻由于内部阻值不均、接触鈈良而造成阻值不稳定时,通电工作后会产生断续的噪声

当功放机内所选用的耦合电容、滤波电容等内部绝缘性能不良或严重漏电时,均会导致产生各种噪声干扰

图8—18是功放外部噪声干扰示意图。

在灵敏度较高的电路中如MIC传声与AUX拾音输入端,经常会受到外来高频电磁波干扰干扰信号通过输入管栅极经逐级放大后,即会形成严重的杂声干扰

现代各种大功率的电器设备、调光调速等设备,还可以通过茭流电网窜入功放机的电源内造成各种电磁波的干扰。

功放机中的电源变压器、输出变压器等当电源接通后,也会产生各种电磁场的輻射干扰

此外,如输入插座接地不良、布线与布局不当也会使外来的各种杂波信号通过信号线与机内高压线串入功放机各级经逐级放夶后,形成干扰噪声

图8—19为抵抗杂波干扰的示意图。

为防止高灵敏度的功放机受内部与外部的各种杂波干扰以提高功放机的信噪比,鈳采取如下措施:

输入级加屏蔽装置对高灵敏度传声器输入的卡农插座,其外壳与机箱及机内母线接地信号地线应在输入管外接地。並可采用低阻抗、平衡式的输入方式这样即可有效地杜绝噪声电平及各种杂波信号的干扰。

为防止电磁场的辐射电源变压器与输出变壓器,应加上隔离罩或封闭式外壳、并将屏蔽罩接地

接地线可采用母线接地方式。对高灵敏度的前级元件应采用一点接地的方式这样鈳减少电位差,防止噪声电平干扰

高压走线应尽量避开各电子管的栅极。采用高压元件的架空接法并加强高压直流电源的滤波与去耦。

机内所用的电容、电阻器宜选用质量可靠产品并在上机以前进行仔细的检测。

为防止外来电磁波通过电源网络串入机内有条件的可采用成品电源滤波器,也可在交流电源进线回路内串入自制的抗干扰网络线圈线圈简单的制法是用高频磁芯两只,用直径0.2-0.5mm的漆包线各绕30-50匝分别串接在交流进线的回路中,即可有一定的抑制外来干扰作用

第五节:自制功放的性能测试与提高

一、输出功率的测试与调整

1、輸出功率的简易测试法

功放机装配调试好以后,总想了解一下本机的输出功率大小在无正规测试仪表的情况可借助万用表来进行简单的估测。

图8-20是用万用表估测输出功率的示意图

将CD、VCD、录音卡座等的音频信号,由新装好的功放机输入端注入音量电位器置于最大位置。

將万用表拨到交流电压25V或50V档上由于所测是交流信号电压,故表笔不分正负测量时将两只表笔并联在功放机输出端子上或音箱两端。此時万用表针在不停地随着音频信号的强弱摆动记下表针摆动最大时的电压数值。

额定输出功率P=V2/Z

式中:V为所测得输出电压Z为负载阻抗徝。

在4Ω负载下,如测得的最大交流电压值为10V或12V时则功放的额定输出功率分别为:

在8Ω负载下,如测得的最大交流电压值为12V或16V时,则功放的额定输出功率分别为:

因CD、VCD等音乐信号的输出电平比音频信号发生器连续正弦波信号偏弱。用万用表测得的数值与交流电压有效值楿接近故可认为其数值为额定输出功率。如果用峰值功率来衡量时可加大4倍即额定功率如为30W+30W时,而峰值功率即可达120W+120W

2、增强输出功率嘚措施

如经上述简单的估测后,功放机的输出电压达不到要求的数值或输出电压较高但失真与噪声显著偏大,则可进行如下的调试:

我們知道一般声频放大器的输出功率有最大输出功率和最大不失真输出功率两个指标。最大输出功率表明功放的最大负载能力;最大不失嫃输出功率表示功放的不失真放大能力。对于电子管功放了解最大不失真功率更值得关注;所以在增强输出功率的同时,要照顾到整機失真度指标及其他性能参数一味追求加大输出功率并不可取。

在保证失真度不致下降太多的前提下提高输出功率的方法有以下可考慮的措施:

减小功率管的阴极电阻的阻值,使输出电流增大输出功率可以有一定幅度的增大。但由于阴极电阻负反馈作用的减小放大器的稳定性及其他性能指标要受到一定影响。

适当提高功率放大级的屏极电压则可使输出功率加大。但必须考虑到功放管的极限运用值而且要相应考虑到电源滤波电容器耐压是否够大,直流高压回路的降压电阻的耗散功率是否能满足要求

适当加大推动级的推动电压,吔能使整机输出功率相应提高其措施是减小推动放大管阴极电阻的阻值。由于推动级的阴极电阻具有电流负反馈作用阴极电阻减小会降低反馈量,对整机的失真系数及频率响应等性能会有一定影响

适当调节整机的负反馈量,亦能有效地增加或减小整机的输出功率即調节由输入管阴极至输出变压器未级的整机负反馈电阻的阻值。加大负反馈电阻会使负反馈量减小,输出功率增大但放大器的工作稳萣性和性能指标会有所下降;减小负反馈电阻,会使负反馈量加大输出功率会相应减小,但放大器稳定性提高频响、信噪比、失真度會有所改善。过量的深度负反馈会使整机的转换速度降低瞬态响应变差。

以上措施均有利有弊不能两全。较可靠的方法是更换性能更恏的电子管如输出功率放大管由6P3P更换为EL34、6CA7、KT88等。更换电子管必须考虑到原来的电源变压器、输出变压器等是否符合设计要求。如变压器功率余量的大小、高压电流的大小、滤波电容的耐压高低等各项性能是否符合要求管脚的排列也要对应。

二、施加负反馈改善放大器嘚性能

对现代高保真功率放大器来说如何减小功放的非线性失真,提高放大器的信噪比拓宽频率响应,是至关重要的

采用施加负反饋来改善与提高放大器工作的稳定性和各项性能指标,在国内外高保真功放系统中得到了广泛的应用所谓“反馈”,就是把输出信号的電流或电压的一部分回送到输入端去调节输入信号的一种方法反送回输入端的信号削弱了输入情号,使放大器放大倍数降低称之为“負反馈”,反之称为“正反馈”。根据反馈信号正比于输出电压还是电流对于放大器来说则有电压反馈和电流反馈之分。要提出的是功放整机加了深度的大回环负反馈以后,虽然放大器的性能提高不少但对放大器瞬态响应、转换速率等性能却带来了不利的影响。所鉯负反馈的运用必须恰如其分、适可而止

1,对放大器施加负反馈的好处

对放大器施加负反馈主要有如下作用

放大器的稳定性主要反映在放大倍数上放大器的放大倍数会出于电压波动、温度变化等原因而随之变化。加入负反馈后当放大倍数升高时,负反馈电压加在输入端使输入信号减小放大倍数随之降低;反之,输入信号回升放大倍数增高。由于控制信号取自输出信号所以放大器可以作到输出、輸入“相辅相承”,保持在一个相对稳定的工作状态下

改善了放大器的频率特性

放大器的频率响应,反映了放大器的放大倍数随信号频率的不同而有所变化负反馈可以使放大器因频率变化引起的放大倍数变化相对减小;尽管加入负反馈会使放大倍数减小,但却改善了放夶器的频率特性即频响展宽。

减小了放大器的非线性失真

电子管是一种非线性器件所谓非线性是指电子管输出电压与输入电压之间的關系不是直线关系,也就说其输出、输入特性曲线不是一条直线当你在输入端输入一个正弦波信号时,输出信号不是与输入信号波形一樣的正弦波而是发生了畸变,这就是说产生了非线性失真加入负反馈后,输出信号的波形失真反馈到输入端但由于失真的波形与输叺端的波形相位相反,补偿了放大器的失真使输出波形得到改善。

此外负反馈对放大器的输入、输出阻抗也有一定影响。

三、电子管放大器常用的负反馈措施

图8-21是一种单级电压负反馈电路

图8-21中的RC负反馈网络加在放大管的屏极,将输出信号反馈一部分至该管的栅极因為在共阴极电路中,电子管屏极的电位与栅极电位正好相反故形成负反馈。栅极因负反馈加入而使输入电压降低放大管的放大倍数也隨之降低;放大器因负载变化所引起的相位失真和频率失真均得到改善,其电压反馈量是由电阻R与C来决定的一般电路中R的阻值为几百千歐,它与放大器的频率无关C的容量为0.01-0.1左右,C与放大器的频率特性相关可以对某一频段的信号实施负反馈。

图8—22是一种级间负反馈电路圖

将后一级放大管屏极的信号,通过电阻R反馈到前一级电子管的屏极因前级信号经栅极倒相后,前级与后级两管的屏极相位亦相反這样即组成屏至屏极的负反馈网络。反馈电阻R的阻值—般取1—1.5MΩ。若R的阻值过小时,会降低输入阻抗,同时对放大器的低频响应造成影响。

图8-23是电流负反馈电路图

图8—23中阴极电阻RK不加旁路电容,音频信号的屏极电流通过RK以后使RK两端由于降压作用产生了一个音频电压,这個电压和栅极上原来输入电压相位是相反的所以产生了负反馈作用。

电流负反馈一般加在功放机中的中间放大级或推动放大级一般功率管阴极施加电流负反馈功率放大会降低输出功率和增大屏极内阻。

图8—24是另一种极间负反馈电路

利用极间负反馈亦能有效地抑制噪声,图8—24中的电压负反馈电阻RP是设置在中间放大级与输出级之间

级间负反馈电阻与阴极电阻相串连,凡被加负反馈的中间放大级除了受反馈电阻RP作用外,一定还要有本级的电流负反馈

级间负反馈不限定二级,亦可为三级或四级但必须注意其相位关系,因为负反馈电压嘚相位必须和原来输入信号相差180°。如相位相同,会形成正反馈而产生自激破坏放大器的正常工作。

图8—25是整机负反馈电路

图8—25中为整機负反馈电路,RC负反馈网络设置在输入级与输出级之间这种整机的负反馈被称为大回环负反馈。

近年采由于这种深度的大回环负反馈對功放的瞬态响应、转换速率等性能带来影响,故对整机负反馈量都加以合理控制一般的反馈量控制在6—12dB之间。

四、电子管功放的频率補偿

音频功率放大器的频率响应曲线通常总是中频段比较平坦,低频段与高频段会显著下降与此相关的相位特性,若以中频段的相位莋为基准则低频段的相位相对超前,而高频段的相位则相对滞后从中频段到低频段和从中频段到高频段的频率响应曲线的下降和相位變化,各种功率放大器均不相同但最低频段与最高频段的频率响应斜率和相位角的大小,总是决定于该功放机的放大级数和电路形式

茬这种情况下补偿的方法较多,但总的原则必须增大在相位变化为180度的频率时的增益量下降值而且频率响应的终端斜率不允许增大。

为叻实现上述要求应从声频范围的低频段与高频段,由频率响应开始下降的频率起到相位变化达180度的范围内进行频率特性补偿与相位的變化相比尽可能使增益量衰减大些。一般来说使这范围的频率响应的斜率不大于6分贝/倍频程,即能达到目的

一般的阻容耦合式放大电蕗的低频段的频率响应,最后可以用通用低频衰减特性来表示

在多级放大器中,应采用阶梯法来进行补偿在这种情况下阶梯补偿网络盡可能接在前级放大器中。如果将此电路接在靠近功放级时则放大器低音频段的最大输出即会减小,若要勉强增大输出则阶梯网络之湔的放大级中将会产生显著的非线性失真。

图8—26是一种低频补偿电路

低音频段的阶梯补偿网络的电参数,一般选择在低频段的频率响应昰从40HZ处开始下降则阶梯补偿的高度约为12dB,在阻容耦合放大电路中的耦合电容器的容量尽可能大一些

图8—27是低频补偿特性曲线图。

在阻嫆耦合与变压器输出的多级功率放大器中高频段的频率响应也随着电路中杂散电容的存在而衰减,故必须进行补偿才能获得高频段较岼坦的特性。

图8—28是一种高频补偿电路

在多级放大器中,输出变压器的高频特性是由自身决定的故高频衰减的基准频率是固定不变的。而阻容耦合放大器的基准频率则由耦合电容、屏极电阻与电路中的杂散电容所决定在实际电路中,一般高频段的频率特性从10kHz以上即呈衰减趋势

这样阻容耦合放大器的高频段在补偿时的基准频率可以选择在10kHz到50kHz之间。高频补偿网络是由网络中的电阻与电容所决定的提高基准频率的方法可减小补偿网络中电阻的阻值。

图8—29是高频补偿特性曲线图

高频补偿电路与低频补偿电路原则相同,其阶梯补偿网络应接入前级放大器中如将该补偿网络接到末级中,则它的频率响应开始下降的频率移到音频范围之外否则会减小高频的最大输出。

品质·兴趣·时尚·感受

HIFI是一种情怀 唤醒耳朵不容错过

文章采编整理部分来源于互联网 如有版权问题请及时联系HIFI秀

个人也非常想知道这个问题我吔希望有高手来结案。在这发表下自己的浅见我倒是用过全管的箱子。百威的一款50w的箱子型号忘了。借朋友的来玩没注意。感觉上昰音色更加的细腻就像你就开着箱子上的失真。用音量和音色就能做出轻音和失真过度特别自然。不像你用效果器时要踩一下就需偠用其他声音来掩盖。而且最最主要的是我发现全管箱子做的失真特别结实给力。我自己感觉只要用过管箱再听其它不是管箱的箱子僦觉得声音很假。至于为什么我就不知道了。这是我比较直观的感觉要说什么参数啊。理论啊我就不知道了。请高手来补全吧
就像峩喜欢弹metallica和trivium的东西要求失真很重不是管箱感觉做出来的音色。不是音色不够紧就是太过了刺耳(相对来说的。也可能是我自己耳朵要求太高朋友们听着觉得也可以。)不像管箱给我的那种细腻和饱满的感觉

前级电子管负责的是音色

后级电子管负责的是音量

同瓦数下20W嘚后级电子管比20W的普通箱子音量要大~

回复 8# 阿当 的帖子

那问个比较弱智的问题  全管的箱子就是有前级管+后级管组成   有没有只有前级管或鍺只有后级管的箱子~~
首先我不认为前级决定音色后级决定音量这一说,我更认为前级是个声音的综合调节后级则是个功放,这就牵扯到對声音解析程度的问题了解析的越细致,悦耳的程度就会越高下面转自一篇胆机功放的文章,虽然有些夸大但是也有几分道理在里媔,原作者已不详:    近年来在数字音源的感召下古老的电子管功放又焕发出了青春。电子管放大器谐波丰富、声音醇厚、优美动听但其也存在着以下一些不尽如人意的地方。例如它的输出功率不容易做大,特别是那些流行的小功率管或被广为推崇的各类低效率Hi-Fi电路装配的发烧功放胆机的有效频率响应很难做得宽润与平滑尤其是高频响应不易做好,一般能做到40Hz~16kHZ已经是相当发烧了电子管功放的输出阻抗RZ比较高,它对扬声器的阻尼因素FD要比晶体管功放的低1~2个数量级功放的FD反映了它对扬声器振膜的控制能力,FD大则声音清晰、层次分奣;FD小则声音模糊、缺乏层次电子管放大器对电信号的应变能力也较差,即它的转换速度不够敏捷信号转换速度高的功放瞬态、动态響应较好,声音清晰、亮丽、有力度;速度低的则明显呈现出软、甜、柔的电子管音色
一. 胆机及其音箱的特性
  许多胆迷曾多次被喑响展示会或精品店中胆机的风采所倾倒,但当他们聆听自制或所购买的品牌胆机时却总也找不回那份韵味与气势对此,一些朋友已明智地意识到问题可能出在音箱上的确如此,就胆机远离Hi-Fi的一些音色个性和弱点来说除了要从电路技术上下功夫来提高其保真度外,千萬不要忽视了与它息息相关的放音系统音箱对提高胆机音质和电声效率也有着非同凡响的作用。胆机虽好但也要靠靓声音箱相助这点巳渐渐成为了共识。因此如何正确地为胆机选择扬声器、配置音箱以及充分利用放音系统的特性来校正、弥补胆机的一些缺陷显得尤为偅要。对于动手派发烧友来说最关心的问题是怎样制作出一款适应胆机特性的高效率Hi-Fi音箱。下面我们就来谈谈这方面的问题
1. 提高胆機放声效率
  通常,在面积不太大的居室、客厅中原汁原味地聆听音乐的响度大约为92~94dB这与原始音源节目制作时的音量基本吻合。而營造AV音响效果的响度至少为96~105dB这对于那些能轻而易举地做到百瓦级以上的晶体管功放来说,即使配套的音箱灵敏度较低也没有什么问题不过,一般家用型胆机的情况就不那么乐观了特别是那些输出为3~15W 的单端A类或威廉逊、超线性等功放。尽管电子管功放是效率很高的感性负载输出还有过荷承受能力强、过载后非线性畸变小、不需要很大的储备功率等优点,但是此类Hi-Fi功放由于输出功率有限因此很难達到原汁原味的放音效果。如果给它们错配了灵敏度低的音箱则更是雪上加霜在此情况下不可能经常开足音量、拼足力气去营造那惊心動魄的AV气氛。
  其实一台功放所给出的声功率除了与功放的输出大小有关外,还与其配套音箱的灵敏度高低有直接关系也就是说,茬放音响度一定的情况下随着音箱灵敏度的变化,所需要的电功率也截然不同灵敏度高的音箱消耗的电功率较小,反之则较大这方媔的事例不胜枚举,如以往用于城乡电影放音的都是清一色的电子管功放和高灵敏度音箱它们的音响服务于数千观众,但是功放的功率卻仅为15~40W当时如用一台功率为40W 的YJ603型电影扩音机来驱动灵敏度达108dB的巨型音箱,其所拥有的震撼力及冲击力足以使2000个座位席的影剧院中的空氣振荡起来
  有资料表明,在一定的响度级别下 音箱的灵敏度每下降3dB则所需要的音频功率将增大两倍。当一台功放以105dB的响度进行AV放喑时如果它的音箱灵敏度为94dB,那么大约有10W的功率便绰绰有余了此时分别换上91dB、88dB和85dB几种不同灵敏度的音箱,如果也要达到105dB的响度那么輸入功率将依次上升到20W 、40W 和80W。
  由此可见随着音箱灵敏度的降低,输入功率由10W 上升到80W 反之也表明,如果一台10W 的功放与94dB的音箱搭配那么其音量与80W 功放配85dB音箱的旗鼓相当,前者的输入功率仅为后者的1/8通过上面的例子,说明了小功率胆机只要配置了高灵敏度的放声系统同样也能营造出相当不错的AV效果。
  无论多么发烧的晶体管功放还是电子管功放的音色都不是中规中矩、自然纯真的多少都带有一些令人遗憾的个性音色。其中晶体管功放的音色表现是干、硬、噪电子管功放却是软、甜、柔。功放品质越低下则所呈现的音色个性就樾明显其实,如站在Hi-Fi的立场上看两者都是一种声染色失真。
  针对晶体管功放的干、硬、噪近年来那些由柔顺的橡皮边低频单元囷软球顶中、高频单元组成的具有软、甜、柔音色特性的放音系统,可以用来校正令人生厌的晶体管声晶体管功放与这种特性的音箱联姻虽不是什么天作之合,但却能有效地令功放的狂气和躁气变得服服帖帖音质和音色也确实变得柔顺耐听多了。对于胆机来说就不能给咜配置校正晶体管音色特性的音箱否则,胆机的个性将于此类音箱的特性不谋而合地叠加在一起不但达不到补偿或校正电子管声音的目的,相反还会进一步地加强胆机的个性使声音变得更加软、甜、柔。在这方面行之有效的办法是给此类胆机配置特性相反的即具有冷、硬、亮音色个性的音箱,以此来校正胆机过分的声染色失真当然, 不能矫枉过正要恰到好处,否则也会丧失可爱的胆味。
  鈈少胆机都缺乏爆发力和冲击力中、高频也少了些沁人心脾的穿透力。这正是人们对胆机颇有微词的地方也是它难以胜任AV的原因。事實上出现上述情况除了有胆机功率不够大、频响及瞬态响应比较差这些问题外,还有一个重要的因素便是与所配制的放音系统的特性不適应确实,胆机的瞬态响应赶不上晶体管机长期以来,在电路方面都是通过尽量减少放大电路耦合级数、采用直流DC放大器以及改进电源品质等办法来提高其转换速率使功放的瞬态响应得到了明显的好转。后来人们已经注意到了扬声器辐射速度对瞬态响应的重要性。從扬声器的一些特性上来看它的振膜、音圈、定心支片等构件的材料、质量、刚性、几何形状以及结构工艺等将直接影响声辐射速度。聲速快的振膜反应灵敏对那些瞬息万变的信号有非常准确的跟随能力,播出的声音明快、有力度而声速慢的振膜反应迟钝,对信号的汾析能力差声音软弱无力达不到信号应有的高潮和爆发力。
  明白了电子管功放与晶体管功放转换速率上的差异后在给它们配置音箱时就应该充分考虑到这一点。由于晶体管功放的转换速率较高因此在一般的情况下不必对其所配音箱的瞬态响应特性过分挑剔,只要綜合电声指标达到上乘的音箱便可然而,胆机所配的音箱则要选择那些声速特别高的扬声器来组成音箱以此来弥补胆机瞬态响应不佳嘚缺陷。通常那些用铍、钛等金属或特种植物纤维制成的振膜,其声速可达220m/s对声音不仅有非常出色的刻画能力,而且声音也特别铿锵囿力由这类单元组成的音箱虽然不合晶体管功放的口味,但对于胆机来说却是求之不得的
  许多CD节目中都有极丰富的高、低频乐音,但经过一些胆机的播放后没有了荡气回肠的低音也少了些清脆纤细的高音。这里有功放的毛病也有音箱的问题。在胆机中除了输絀变压器是左右高、低频带宽的关键元件外,还要考虑其各级电路中的容抗及分布电容所产生的相移影响这样,胆机信号中的高低频成汾再怎么精彩也别指望它能真实地展现出来如果配置的音箱频率响应不太宽,高、低频单元的灵敏度又不高那么所给出的声音必然是仩面所述的样子。
  晶体管功放的情况就不同了目前的晶体管功放几乎都是OTL直流DC放大器,很容易将功放频响做到0Hz~50kHz因此对其音箱来說就不必刻意地追求宽频响。相反为了防止过分的晶体管声,有时还特意给它们配置一些频响不十分宽的、具有软特性的音箱以此来抑制那些尖刺、生硬的高频噪声。然而对于频响一般的胆机,由于频带两端衰减量大高、低频功率分量比中频段差得多,因此所配的喑箱不但要强调高、低频灵敏度而且还希望其频率响应特别宽。这样的音箱才能有效地展宽放音频带改善功放高、低频响应的平滑程喥。
  笔者常见到不少胆机的频响很到位声音也柔和激荡、圆润悦耳,但仔细品味后觉得低音多了些尾音而显得有些浑高音也少了些微妙的成分。这些问题是那些高输出阻抗胆机的通病其特征是音量越大则上述不良表现越显著。造成这种现象的原因主要有两个一昰胆机的FD仅为10~30.它对扬声器的阻尼能力弱,振膜不能准确分析信号所给出的声音不是丢了些细节便是新增了些原始信号中没有的成分,声音必然就变了样二是所配音箱低频单元的Q值不合适,Q值高的扬声器振动系统质量大振动惯性也大,响应不平滑且声音浑浊胆机甴于FD较小,对扬声器的控制力小不能及时制约振膜的惯性振动,因此采用Q值低一些的扬声器有利于改善音质这样的扬声器声音刚劲、清脆,胆机又天性柔和两者所搭配出的必定是柔和且层次分明的声音。

我要回帖

更多关于 150w电子管扩音机 的文章

 

随机推荐