电磁波的发射可以定向发射吗?需要怎么处理

您的举报已经提交成功,我们将尽快处理,谢谢!
大家还关注
(window.slotbydup=window.slotbydup || []).push({
id: '2081942',
container: s,
size: '1000,60',
display: 'inlay-fix'如果被 电磁波定向仪、电磁波定向能用于精神控制 该怎么办,该找什么医院来检查这些东西_百度拇指医生
&&&网友互助
?如果被 电磁波定向仪、电磁波定向能用于精神控制 该怎么办,该找什么医院来检查这些东西
电磁波定向仪、电磁波定向能用于精神控制 脑电波扫描仪施害者通常使用的五种仪器一、人体身命探测仪、人体生命探测器(也称人体雷达)二、电磁波定向仪、电磁波定向能用于精神控制三、电磁波射像仪、X射线摄像机四、脑电波扫描仪、脑电波扫描仪(人体摄像机/思维语言接收机)五、超声波音像集束电子发射仪、.微波射线发射器﹤一、﹥人体身命探测仪、人体生命探测器(也称人体雷达)这些是真的吗,如果是真的,那我们该怎么样解决这样的问题
相信你的感觉,但是这不是真的。你可能遭遇了思维障碍--偏执障碍,电脑感染木马一般,就像梦境可以是彩色的,但是那不是真的。建议求助职业心理师做辅导治疗。必要时还可以吃点药物。一般治疗效果都不错。
为您推荐:
您可能关注的推广回答者:
* 百度拇指医生解答内容由公立医院医生提供,不代表百度立场。
* 由于网上问答无法全面了解具体情况,回答仅供参考,如有必要建议您及时当面咨询医生雷达是如何让电磁波朝一个方向传播的请问如何让电磁波能够朝一个方向传播呢!或者有没有其他遥控媒介,但是具有一定的方向性_百度作业帮
雷达是如何让电磁波朝一个方向传播的请问如何让电磁波能够朝一个方向传播呢!或者有没有其他遥控媒介,但是具有一定的方向性
雷达是如何让电磁波朝一个方向传播的请问如何让电磁波能够朝一个方向传播呢!或者有没有其他遥控媒介,但是具有一定的方向性
天线是用来辐射和接收微波的.采用偶极子作为辐射器,以抛物面或抛物柱面作为反射器的天线系统.偶极子辐射器放在抛物面的焦点上,使微波经抛物面反射后会聚成一束而定向辐射.经抛物面发射的微波约有10°的张角.
传统反射面天线是通过反射面将电磁波聚束,向一个方向辐射,想要改变方向,就需要从机械上转动天线。现代的相控阵天线可以通过阵面移相器的调整将电磁波聚束,还可以改变天线阵子之间的相位差,从而实现波束的电子扫描,不需要机械转动就可以调转波束。...电磁波的应用_电磁波的应用-牛bb文章网
电磁波的应用_电磁波的应用
电磁波的应用            DD雷达原理及应用张永好(宝鸡文理学院物理系 721007)摘要:本文就电磁波在探测跟踪和控制目标方面的应用展开论述,首先阐述雷达系统的组成,雷达的工作原理其中涉及到电磁波定位的基本原理和方法以及利用多卜勒效应测定目标径向速度的方法。其次分析讨论影响电磁探测的几个因素,最后对雷达在军事方面的应用作较为详细的说明,同时也对未来雷达的发展作以展望。关键词:雷达 电磁波 目标      Application of Electromagneticwave            --ralar's mechanics andapplication              ZHANG Yonghao(Baoji College of Arts and Science, Physics department721007)Abstract: This article give a statementabout the application of electromagnetic wave in searching,following, and controlling the direction of objects. Above all , itstate the component and mechanics of radar. Including methods andprinciples of locating of radar and the methods of using Dopplereffect probe the radial speed. Next, it analyse some factors whichdo something wrong to search objects. The last. This article tellthe reader the important role in the micitary. And also, there'snew expectation about the modern radar in the future.Key words: radar electromagnetic wave objects1.雷达概述  雷达,英文单词radar中文译音,即radio Detection andranging(无线电发现和测距)开头字母组成,早期的雷达就是用来发现目标和测量目标距离,那么雷达在什么时间、什么情况下出现的呢?  二十世纪初,无线电技术的迅速发展,得力于人们对电磁波的不断深化认识,同时人们对电磁波的应用也不断扩大。电磁波帮助人类将通信距离伸展几千公里,是一个很好的例子。那么,能否利用电磁波实现对运动物体的远距离测量呢?人们从蝙蝠这一动物得到启发,它利用喉部发出的超声波,通过障碍物如虫、飞蛾的反射,再被耳朵接收,从而发现目标。  利用电磁波探测目标是在二十世纪三十年代后期出现的。1934年,英国科学家R.W瓦特在对地球大气层进行无线电回波信号研究时,偶然发现荧光屏上有一串明亮的光点。经过反复试验,证实了这些光点正是实验室附近某幢大楼的反射回波信号。这个意外的发现,使他萌发了利用无线电回波探测移动目标的设想。1935年由瓦特和其他英国电气工程师研制的第一部用于探测飞机的雷达,虽然探测距离只有几十公里,但却开辟了利用电磁波探测和定位的道路。  第二次世界大战却给刚刚诞生的雷达事业提供了良好的发展机会。大战开始阶段,雷达作为一种新型防御系统用来预报敌机的入侵,当时在德国飞机狂轰滥炸的威胁下,英国根据瓦特的建议在沿海地带建起了许多雷达站,用来预报来犯敌机的数量,航向和距离。这是雷达首次投入使用。而随后太平洋战争爆发,著名的"珍珠港"事件给美国了沉重的一课,使他们从轻视雷达神奇作用的迷梦中惊醒过来。1941年12月7日,美国夏威夷海军基地风平浪静,谁会想到一场著名的偷袭战的来临,而战前美国的雷达预警确有一群来犯的日本飞机。而美国人的猛醒又给日军以沉重的打击。在随后爆发的中途岛海战中,美国打了一个漂亮的报复仗,而在其中,雷达也帮了不少美国的忙。  在战争中逐渐成长起来的雷达,不断接受战争的洗礼,因此越发变得成熟完美。战争后期,雷达与武器操纵系统结合在一起。也被炮兵、部队用于搜索自动跟踪和轰击目标,从而使火炮的命中率大为提高,逐渐广泛用于海、陆、空全面的防御和打击战中,发挥着举足轻重的作用。  雷达不仅在国防军事方面有着重要的作用。同样,雷达的广泛应用不断渗透到国民经济的各个领域。如:应用雷达探测大气奥秘,进行天气灾害预报;跟踪导航对卫星进行跟踪和定轨。对飞船进行和控制,所有这些都是雷达电波为人类社会做出的卓越贡献。作为一名大学生,有必要对雷达的工作系统、原理作较为系统、全面的了解。2.雷达工作原理2.1雷达系统的组成  雷达最主要的功能是发现目标和测定目标的位置,它的基本组成包括三个部分,发射机,接收机和无线外加显示器、定时器和控制系统等主要构件。脉冲发射机在定时器控制下周期地产生强大功率的矩形脉冲调制的高频电磁波,这个电磁波经系统和收发开关到天线后,按特定的方向向空间集束辐射。天线受控制系统操纵使波束在空间扫描,以便搜索目标,当目标受电磁 图1 雷达系统示意图波照射时,产生后向散射回波。这个回波经收集,通过无线开关送到接收机。接收机将收到的回波信号连同发射机工作时通过收发开头漏过来的一小部分主波信号,一起进行高频放大、中放、检波和视频放大、最后将视频脉冲信号加至显示器。  雷达显示器在受到定时信号触发后开始工作,最初在显示器的荧光屏上出现的是经开线开头漏过来的主波信号。这也是电磁波离开天线时的起始信号。待回波信号到来时,经计算机处理,荧光屏上显示目标的位置及有关参数。最常用的雷达显示器采用极坐标的平面显示装置,屏幕的中心代表雷达站所处的位置,目标以亮点显示出来。亮点与圆心之间的距离即目标与雷达站之间的距离显示。它与正北的夹角就是目标的方位角,在实际的显示器中都有坐标的机械刻度和电子刻度;因此能直接从显示器上读出有关目标的系列参数。新型雷达采用电子计算机进行数据处理,内置相应支撑软件,计算机控制各部分协调工作达到方便、快捷,有的雷达还根据实际情况,由计算机控制工作频率或变更工作方式,以提高工作效率和精度。2.2电磁波定位和测速的原理和方法:  如右图是电磁波定位的原理图,由发射机产生的一定调制的高频电磁波,经发射天线按特定方向辐射到空间,若电磁波在空间传播时遇到目标,一部分高频电磁波被反射回来,经过无线并且进入接收机,观察人员通过显示器 图2雷达工作原理示意图在接收终端判断有无目标及目标的性质,且通过自动化处理,给出目标的系列参数,以明辩敌我,及时作出应对。  一般情况下,我们只用一副即可完成电磁波的发射和接收,当有脉冲时,电磁波通过天线发射出去,这时可以利用触动开关或电子信号使接收机关闭,当发射机停止工作时,立即打开接收机,则可利用一副天线,而完成电磁波的发射和接收。  现在我们假设空间传播介质是均匀的,则电磁波在这样的空间内传播我们认为是匀速的;沿直线的传播,电磁波离开天线到目标后,经反射又回到天线所用的时间为,设目标距离雷达站的距离为R,则电磁波在这段时间内所经历的路程为2R,根据路程的速度公式,则 ,其中c为电磁波的传播速度。这是雷达测量目标距离的基本公式,从式子我们可以看出,只要测出即可实现对目标距离的测量,但在通常情况下,我们所要知道的是运动目标的系列参数,如径向速度,即目标向着或(背着)雷达站方向的速度。在雷达系统中,我们利用多卜勒效应来实现测速的。  日常生活中有这样的体验,当鸣笛的火车由远处开来时,我们听到汽笛声由低到高;而当火车急弛而过时,我们则感觉到汽笛声由高到低,音调的高低是由声源振动的频率所决定的,但是在上述情况下,我们听到的音调变化完全是由声源与听者之间的相对运动所引起的,由于波源或观察者的运动而出现观测频率与波源频率不同的现象,称为多卜勒效应,是奥地利物理学家多卜勒(J.C.Doppler)在1842年发现的。[2]多卜勒效应有如下三种情况:1.观察者静止而波源运动,则有: (1),其中 为观测频率,为波源频率, 为波速, 为波源运动速度。2.波源静止而观察者运动,则有 (2),其中为观察者运动速度。3.若观察者和波源在同一直线上运动 (3),其中为波源运动速度。自从在音频范围内发现多卜勒效应以后,经过几十年研究,在1938年证明了在电磁波频域内同样有多卜勒效应,下面,我们结合有关电磁波的知识,研究利用多卜勒效应测量目标经向速度的方法。 图3 电磁波受移动目标的反射设雷达发射波长为 ,频率为的一段电磁波,它在空间延伸的长度为D,而其中包含的波数为: .  若这段电磁波自左向右传播时,在P点遇到了目标,则在前方A点的电磁波先反射回来,然后是后方的B点被反射,如果目标P是静止的,则这段电磁波与目标的接触时间为,且反射后AB点的距离也为D。  若目标沿一定速度向雷达站飞行,由运动学知识所知,目标与这段电磁波的接触时间变为,在这段时间内目标的前进距离为:,也就是说B点受目标反射时将比A点反射时缩短了以上这段距离,在这段距离上电磁波传播时间为:,也即接收这段电磁波的持续时间将缩短。因而由于目标的径向运动,接收的持续时间将是因回波信号在AB间的波长数n不变,所以持续的减少必使频率的增高:(4)由上式可知:(1)当,说明目标与雷达站无相对运动,回波频率等于发射信号的频率。(2)当 ,说明目标向雷达站运动,接收频率高于信号频率。(3)当 ,说明目标远离雷达站运动,接收频率低于信号频率。同样,也可直接从(1)、(2)式推导出雷达接收频率 与雷达发射频率之间的关系:(同上式)通常,我们将相对运动所引起的接收频率与发射频率之间的差距称为多卜勒频率,用表示(5)由于电磁波的传播速度远远大于相对运动的速度 ,即,则略将(7)式化简为:(6)从上式可以看出,只要测出信号的多卜勒频率就可以求出目标运动的径向速度 :在雷达系统中,采用一种专门的设备,可直接测量出,经计算机处理,在显示器上可读出 。2.3雷达目标的散射截面积:雷达发射的电磁波遇到目标时,一部分能量被目标吸收转化为热,另一部分在目标表面产生感应电流而重新辐射,这种重新辐射的能量,有一小部分被接收天线截获,从而发现目标。为了便于发现目标,通常希望目标尽量少吸收发射的电磁波的能量,且有较强的将电磁波反射回雷达站的能力,然而这种能力不仅取决于雷达站发射电磁波时天线的定向性,电磁波的波长和极化方式,还与目标的几何形状、尺寸、表面性质以及电磁波的入射角等因素有关。通常情况下,我们用目标的雷达截面积来表示目标对电磁波的散射能力。它定义为:目标散射的电磁功率与目标所在处入射的电磁波密度 之比,即(O),具有面积的量纲。如果雷达站的发热功率是 ,发射无线的方向函数是,目标与雷达站间的距离为R,则在目标入射处电磁波的功率密度是:[3](7)由 可知: 即目标的雷达截面积,它的等效形式是:[3]式中 为目标处散射波的电场强度, 为入射波的电场强度。2.4雷达方程:  雷达最基本的功能是发现目标,因而雷达用户往往关心的是当雷达参数给定时,它究竟能发现多远处的目标,也即雷达的作用距离。设目标的雷达截面积为 ,入射电磁波在目标处的功率密度是并假定目标把入射的电磁能量全部均匀散射到各个方向,由可知,经目标散射回到雷达站的功率密度将是: 代入(9)式有:(8)根据无线理论,接收无线的有效面积 和无线增益 之间有关系 ,其中为电磁波波长,因而天线接收到的回波功率是或者表示为R与一般参数之间的形式为:[3](9)即雷达的作用距离。通常,雷达采用一副无线并作接收和发射,在微波波段,天线的效率接近于1,天线的增益系数与天线方向系数相等,于是在共用天线的雷达中,上式可简写成:(10)此即雷达方程,当接收的回波功率低于为发现目标所必需的最低输入功率时,雷达就不能发现这个目标,也就是目标处于雷达的作用距离之外,当取最小值时,R有最大值,也就是此时雷达的作用距离最大。[3] (11)所以雷达工作时,通常要求接收机将全部回波信号积累起来,以便提高接收灵敏度和更加有效地增加雷达的作用距离。2.5环境对电磁探测的影响:  影响雷达探测的因素是多方面的,首先是地面反射的影响,有的情况下,地面反射波有可能使跟踪雷达把目标在地面以下的镜像误以为真实目标,从而造成错误的跟踪,有时也会影响到探测距离和精度,从而影响工作效果。其次,地表的弯曲也给探测目标的高度和仰角带来麻烦。还有,比如地球磁场,宇宙射线,雷电,建筑等都会给雷达的探测精度带来麻烦,这就要求在雷达开发中,尽显通过各种方法和手段减少这种不必要的影响。3.雷达的应用  雷达在军事方面的应用主要用于预警系统,下面分析台湾独立分子所布置的雷达防御系统,借以说明其应用。  台独分子借用美国支持,疯狂扩军备战,企图分裂祖国大陆,不断布置其防御系统,目前已基本构筑了一个由地面、空中和空间立体配制的近、中、远多种探测手段相结合的全方位立体预警系统,该系统的布置主要由三部分组成:1.地面防空雷达:在地面子系统中,用各种雷达构成一个雷达网,对覆盖的空域进行严密的监视,如台独配置的大型返程相控阵预警雷达,能对1448公里之外的弹道导弹进行探测,可提供7-10分钟的预警时间;其低空监视雷达,主要对小型飞机的探测距离为80公里。可连续跟踪265个目标,主要承担低空补盲的作用;另外其配制的4R-3000防空雷达对雷达同为1平方米目标的探测距离为320公里。主要用于对空搜索构成了台军地面的防护网。而美国所实施的NMD导弹防御系统,其中也是由各种雷达所构成的雷达网,承担预警任务。2.机载雷达:即装在飞机上的各种雷达,就其基本功能来说与地面防空雷达,没什么区别,即将地面雷达搬到了空中。由于站得高,望得远,所以能为防空系统提供更多的预警时间,台军配有的低空监视雷达,主要由轻型车辆或运输机空运,实际上是对低空的扫描控制。另外如E-2T预警机,配有AN/APS-145雷达在正常情况下,它可以探测达至648公里以外的轰炸机,480公里以外的战斗机和258公里外的导弹。可同时跟踪、监视,显示2000个空中和海上目标,预警时间提高到25分钟。某些机载雷达还具有识别跟踪和瞄准目标的功能。3.预警卫星:台军空间通信技术刚刚起步,但由于地理位置,不在赤道地区,所以不能用一颗卫星持续不断地提供预警信息,需要发射多颗卫星才能使卫星轮流通过台湾上空完成预警任务。而美国的参与,则加快了预警卫星的发展。目前,空间预警也是各国所大力开发研究的一个方面。  雷达在国民生活中也有重要的运用。如现代化的机场,利用雷达来管理和调度,航海雷达可以帮助避免触礁等;雷达也应用于天气和灾害预报;同时在宇宙航行方面,雷达已被用于测量火箭、人造卫星和飞船的位置,速度等轨道参数,也可以用来地下探测等,成为我们日常生活中不可缺少的组成部分。4.对雷达发展的展望  针对雷达对抗技术的迅速发展,对未来雷达的发展也提出了新的要求。针对各种干扰,雷达可辐射频率不断改变的电磁波。使它们分别工作在不同波段,从而摆脱干扰信号的跟踪;也可以使用多部的发射机迫使干扰机在宽频带内分散干扰功能,从而降低干扰的能力。同时,我们期望使用多部发射机,使其发射的电磁波频率覆盖整个雷达工作频段,且随计算机控制不断跳变,抵制干扰,增强抗干扰能力。  在更多的情况下,我们认为改变电磁波的频率,极化方向和调制方式是提高抗干扰能力的主要途径。也是当今电子战(EW)对新的雷达提出的要求。而目前研制的太空雷达,则是未来战场上的核心。与地基雷达相比,太空雷达可辨清地面0.3米至1米大小的物体,自动发现并跟踪地面上速度在每小时4公里至100公里的移动目标,拍摄地图,形成分辨率1米左右的地形数学图等地其雷达所不具备的功能。另外,太空雷达具有很强的抗干扰能力,它使用有源立向天线阵,这种天线能将工作频率限定在3cm的范围内,这样一来,敌方的电子或电磁干扰信号都显得无能为力了。如美国的发现1号太空雷达,可保证雷达工作的全时性。另外这种雷达造价低廉,物超所值,且能满足民用及商业方面的用途,将使各大国都投入到雷达系统侦察系统的研制中来。可以预言,新世纪的头10年,将成为制造观测地球的太空雷达的新起点,也是雷达技术的一个跳跃性发展,势必掀起一场雷达革命。  雷达技术是随着科学技术,特别是电磁学的发展而发展起来的。同时,雷达技术本身也极大地丰富着电磁学的内容。电磁波的应用与空间技术的紧密结合,使传统的雷达技术别开生面,电子计算机的应用又使雷达技术锦上添花。可以预期,电磁波的各项新应用与其相互渗透,必将在雷达技术的百花园中不断争艳斗妍,并继续绽出各种鲜艳的奇葩。参考文献+[1]郭硕鸿.电动力学.高等教育出版社.1997.[2]漆安慎,杜婵英.力学.高等教育出版社.1997.[3]时振栋,黎安尧,王晦光.电磁波的应用.高等教育出版社.1990.[4]林宝玺,胡志英.多卜勒雷达.国防工业出版社.1982.[5]林象平.雷达对抗原理.西北电讯工程出版社.1985.[6]王佳锁.中国航天.2002年第3期,44.中国航天编辑部.[7]温杰.现代船舰.2002年第4期,28-30.现代船舰杂志社. 分享: >
“电磁波的应用”相关文章雷达是怎么定向发射电磁波的急_百度作业帮
雷达是怎么定向发射电磁波的急
雷达是怎么定向发射电磁波的急
典型的雷达是脉冲雷达,主要由天线、收发转换开关、发射机、接收机、定时器、显示器、电源等部分组成.发射机产生强功率高频振荡脉冲.具有方向性的天线,将这种高频振荡转变成束状的电磁波(简称波束),以光速在空间传播.电磁波在传播过程中遇到目标时,目标受到激励而产生二次辐射,二次辐射中的一小部分电磁波返回雷达,为天线所收集,称为回波信号.接收机将回波信号放大和变换后,送到显示器上显示,从而探测到目标的存在.为了使雷达能够在各个方向的广阔空域内搜索、发现和跟踪目标,通常采用机械转动天线或电子控制波束扫描的方法,使天线的定向波束以一定的方式在空间扫描.定时器用于控制雷达各个部分保持同步工作.收发转换开关可使同一副天线兼作发射和接收之用.电源供给雷达各部分需要的电能.  目标的距离是根据电磁波从雷达传播到目标所需要的时间(即回波信号到达时间的一半)和光速(每秒30万公里)相乘而得的.目标的方位角和仰角是利用天线波束的指向特性测定的.根据目标距离和仰角,可测定目标的高度.当目标与雷达之间存在相对运动时,雷达接收到目标回波的频率就会产生变化.这种频移称为多普勒频移,它的数值与目标运动速度的径向分量成正比.据此,即可测定目标的径向速度.

我要回帖

更多关于 电磁波发射 的文章

 

随机推荐