vicor技术目前有想法可以申请专利吗吗

您所在的位置: >
按厂商点播 > vicor
时间:日 10:00&&&&&&&&
Vicor 是世界电源行业的先锋与领导品牌,在过去30多年的时间里,不断进取创新,拥有电源专利130多项。Vicor在国防、军事、铁路和其他行业一直保持其强势地位,高可靠性和性能是这些领域成功的关键,Vicor正将其具有竞争力的解决方案扩展到数据中心、新能源汽车(EV)、通讯和工业市场,Vicor的新产品、新技术也在不断推出,如ChiP封装,VIA封装等,进一步简化设计,提高性能,助力电源系统设计...
时间:日 10:00&&&&&&&&
功率元件设计方法是一种工程师可预言的,具有成本效益的设计高性能电源系统的一种方法。它遵循确认、构建和实施三个过程,提供从电源端到负载点的电源系统。
Vicor提供功率元件和PowerBench在线工具,包括解决方案选择,白板工具,仿真工具,配置工具,计算器等,有助于设计人员使用这种方法建立高性能的电源系统。
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
Copyright (C) ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights
京ICP备号-2请选择工作地点
热门城市全部城市
呼和浩特市
鄂尔多斯市
呼伦贝尔市
巴彦淖尔市
乌兰察布市
锡林郭勒盟
齐齐哈尔市
神农架林区
西双版纳州
日喀则地区
乌鲁木齐市
克拉玛依市
吐鲁番地区
阿克苏地区
阿勒泰地区
图木舒克市
花地玛堂区
圣安多尼堂区
地区导航:
深圳嘉睿悦能科技有限公司
所属行业:
公司地址:南山区科技园粤兴三道南京大厦产学研大厦B509
公司规模:20-99人
VICOR电源技术应用推广工程师
重庆市/黔江区
招聘 若干 人
更新时间:
温馨提示:带 * 号的为必填项
工作职责:1, Dedicated Vicor POWER FAE---Vicor电源模块的专职FAE2, 负责电源模块市场开拓, 前期的产品介绍推广;3, 熟悉AC/DC、DC/DC大功率电源模块.4, 负责公司DC-DC,DC-AC,AC-DC模块电源产品售前/售后技术支持岗位要求:1)大专以上学历,从事开关电源设计工作2年以上工作经验;2)熟悉开关电源工作原理,熟悉AC/DC、DC/DC大功率电源模块在通信设备厂家、电力设备厂家及铁路设备厂家,医疗设备厂家应用,对电源模块应用有深刻认识;3)良好的沟通表达能力,良好的英文听、写能力
您可能对以下职位感兴趣:
电脑维护工程师
重庆市/黔江区
机械工程师
重庆市/黔江区
急聘企业:
2017, All Rights Reserved. 中文版权所有-OFweek人才网()直流-直流(DC DC)变换器-海文库
全站搜索:
您现在的位置:&>&&>&电子/电路
直流-直流(DC DC)变换器
直流-直流(DC/DC)变换器
变换释义DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制(1)Buck电路――降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。(2)Boost电路――升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。(3)Buck-Boost电路――降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。(4)Cuk电路――降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。还有Sepic、Zeta电路。上述为非隔离型电路,隔离型电路有正激电路、反激电路、半桥电路、全桥电路、推挽电路。 编辑本段变换发展当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6.2、10、17)W/cm3,效率为(80~90)%。日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOS?FET代替肖特基二极管),使整个电路效率提高到90%。编辑本段逆变AC/DC变换是将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为“整流”,功率流由负载返回电源的称为“有源逆变”。AC/DC变换器输入为50/60Hz的交流电,因必须经整流、滤波,因此体积相对较大的滤波电容器是必不可少的,同时因遇到安全标准(如UL、CCEE等)及EMC指令的限制(如IEC、、FCC、CSA),交流输入侧必须加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高的要求,由于同样的原因,高电压、大电流开关使得电源工作损耗增大,限制了AC/DC变换器模块化的进程,因此必须采用电源系统优化设计方法才能使其工作效率达到一定的满意程度。编辑本段译名DC-DC converter编辑本段模块介绍直流-直流变换器(DC-DC converter)内部一般具有PWM(脉宽调制)模块,E/A(误差放大器模块),比较器模块等几大功能模块。如下图UC3842所示:编辑本段工作原理其工作原理为:输出经过FB(反馈电路)接到FB pin,反馈电压VFB与设定好的比较电压Vcomp比较后,产生差错电压信号,差错电压信号输入到PWM模块,PWM根据差错电压的大小调节占空比,从而达到控制输出电压的目的,振荡器的作用是产生PWM工作频率的三角波,三角波经过斩波电压斩波后,产生方波,其方波就是控制MOSFET的导通时间从而控制输出电压的。编辑本段调制方法开关管导通时,输出电压等于输入电压Ud;开关管断开时,输出电压等于0。输出电压波形如上图所示,输出电压的平均值Uo为(4-1)式中Ts―开关周期D―开关占空比,?改变负载端输出电压有3种调制方法:1.开关周期Ts保持不变,改变开关管导通时间ton。也称为脉宽调制(PWM)。?2.开关管导通时间ton保持不变,改变开关周期Ts。?3. 改变开关管导通时间ton,同时也改变开关周期Ts。方式1的PWM是最常见的调制方式,这主要是因为后2种方式改变了开关频率,而输出级滤波器是根据开关频率设计的,显然,方式1有较好的滤波效果。编辑本段调制方式?图4-2(a)是脉宽调制方式的控制原理图。给定电压与实际输出电压经误差放大器得到误差控制信号uco,该信号与锯齿波信号比较得到开关控制信号,控制开关管的导通和关断,得到期望的输出电压。图4-2(b)给出了脉宽调制的波形。锯齿波的频率决定了变换器的开关频率。一般选择开关频率在几千赫兹到几百千赫之间。编辑本段工作模式按照控制电压和锯齿波幅值的关系,开关占空比D可以表示成:(4-2)?直流-直流变换器有两种不同的工作模式:1. 电感电流连续模式2.电感电流断续模式?在不同的情况下,变换器可能工作在不同的模式。因此,设计变换器和它的控制器参数时,应该考虑这两种不同的工作模式的特性。
DC-DC变换器是一种将一种直流电压转换为另一种直流电压的电路拓扑。一般小功率变换器的话使用的是Buck(降压式)和Boost(升压)模式。功率如果很大的话就用别的比方说反激、半桥、推挽或全桥的电路拓扑。按照结构来分的话有隔离与非隔离的区别,也就是隔离的有变压器将输入与输出进行电气隔离,能量通过磁能传递到输出。而非隔离的就是通过开关管直接变化。
比方说一个最简单的DC-DC变换器就是车载充电器了,车上蓄电池的电压一般为DC 10-14.5V,用一个DC-DC的Buck电路转换为5V的电压,可以给手机充电,而如果用Boost电路的话可以转换为19V左右可以给笔记本电脑充电。
这个DC-DC变换器所用的电路是开关模式,是一个开关电源。它的效率很高,节能。一般能达到90%左右。所以能达到大规模使用。如果使用线性电路的话,变换效率会非常低,损失大部分的能量。目前用的很少了。
DC/DC变换器技术现状及未来作者:测量与测?
文章来源:EEPW
更新时间:
分布式电源系统应用的普及推广以及电池供电移动式电子设备的飞速发展,其电源系统需用的DC/DC电源模块越来越多。对其性能要求越来越高。除去常规电性能指标以外,对其体积要求越来越小,也就是对其功率密度的要求越来越高,对转换效率要求也越来越高,也即发热越来越少。这样其平均无故障工作时间才越来越长,可靠性越来越好。因此如何开发设计出更高功率密度、更高转换效率、更低成本更高性能的DC/DC转换器始终是近二十年来电力电子技术工程师追求的目标。例如:二十年前Lucent公司开发出第一个半砖DC/DC时,其输出功率才30W,效率只有78%。而如今半砖的DC/DC输出功率已达到300W,转换效率高达93.5%。
从八十年代末起,工程师们为了缩小DC/DC变换器的体积,提高功率密度,首先从大幅度提高开关电源的工作频率做起,但这种努力结果是大幅度缩小了体积,却降低了效率。发热增多,体积缩小,难过高温关。因为当时MOSFET的开关速度还不够快,大幅提高频率使MOSFET的开关损耗驱动损耗大幅度增加。工程师们开始研究各种避开开关损耗的软开关技术。虽然技术模式百花齐放,然而从工程实用角度仅有两项是开发成功且一直延续到现在。一项是VICOR公司的有源箝位ZVS软开关技术;另一项就是九十年代初诞生的全桥移相ZVS软开关技术。
有源箝位技术历经三代,且都申报了专利。第一代系美国VICOR公司的有源箝位ZVS技术,其专利已经于2002年2月到期。VICOR公司利用该技术,配合磁元件,将DC/DC的工作频率提高到1MHZ,功率密度接近200W/in3,然而其转换效率却始终没有超过90%,主要原因在于MOSFET的损耗不仅有开关损耗,还有导通损耗和驱动损耗。特别是驱动损耗随工作频率的上升也大幅度增加,而且因1MHZ频率之下不易采用同步整流技术,其效率是无法再提高的。因此,其转换效率始终没有突破90%大关。
为了降低第一代有源箝位技术的成本,IPD公司申报了第二代有源箝位技术专利。它采用P沟MOSFET在变压器二次侧用于forward电路拓朴的有源箝位。这使产品成本减低很多。但这种方法形成的MOSFET的零电压开关(ZVS)边界条件较窄,在全工作条件范围内效率的提升不如第一代有源箝位技术,而且PMOS工作频率也不理想。
为了让磁能在磁芯复位时不白白消耗掉,一位美籍华人工程师于2001年申请了第三代有源箝位技术专利,并获准。其特点是在第二代有源箝位的基础上将磁芯复位时释放出的能量转送至负载。所以实现了更高的转换效率。它共有三个电路方案:其中一个方案可以采用N沟MOSFET。因而工作频率较高,采用该技术可以将ZVS软开关、同步整流技术、磁能转换都结合在一起,因而它实现了高达92%的效率及250W/in3以上的功率密度。(即四分之一砖DC/DC做到250W功率输出及92%以上的转换效率)
我们给出三代产品的等效电路,读者可从其细节品味各自的特色。有关有源箝位技术近年论文论述颇多,此处不多赘述。
全桥移相ZVS软开关技术,从90年代中期风靡大功率及中功率开关电源领域。该电路拓朴及控制技术在MOSFET的开关速度还不太理想时,对DC/DC变换器效率的提升起了很大作用。但是工程师们为此付出的代价也不小。第一个代价是要增加一个谐振电感。它的体积比主变压器小不了多少(约1/2左右),它也存在损耗,此损耗比输出滤波电感损耗也小不了太多。第二个代价是丢失了8~10%的占空比,这种占空比的丢失将造成二次侧的整流损耗。所以弄得不好,反而有得不偿失的感觉。第三,谐振元件的参数需经过调试,能适应工业生产用的准确值的选定是要花费较多的时间,试验成本较高。此外,因同步整流给DC/DC效率的提高带来实惠颇多,而全桥移相对二次侧同步整流的控制效果并不十分理想。例如:第一代PWM ZVS全桥移相控制器,UC3875及UCC3895只控制初级侧。若要提供准确的控制同步整流的信号需另加逻辑电路。第二代全桥移相PWM控制器如LTC1922-1、LTC,虽然增加了对二次侧同步整流的控制信号,在做好ZVS软开关的同时做好二次侧的同步整流。但仍旧不能十分有效地控制好二次侧的ZVS ZCS同步整流,而这是提高DC/DC变换器效率最有效的措施。UCC的另一个重大改进是减小谐振电感的感量,这不仅缩小了谐振电感的体积,而且降低了损耗,占空比的丢失也减小了许多.这里我们给出LTC3722加上同步整流的控制电路,由业界工程师们自己去分析对照。
在DC/DC业界,应该说,软开关技术的开发、试验、直到用于工程实践,费力不小,但收效却不是太大。花在这方面的精力和资金还真不如半导体业界对MOSFET技术的改进。经过几代MOSFET设计工业技术的进步,从第一代到第八代。光刻工艺从5μM进步到0.5μM。完美晶格的外延层使我们将材料所选择的电阻率大幅下降。加上进一步减薄的晶片。优秀的芯片粘结焊接技术,使当今的MOSFET (例如80V40A)导通电阻降至5mΩ以下,开关时间已小于20ns,栅电荷仅20nc,而且是在逻辑电平下驱动即可。在这样的条件下,同步整流技术获得了极好的效果,几乎使DC/DC的效率提高了将近十个百分点。效率指标已经普遍进入了&90%的范围。
目前,自偏置同步整流已经普遍用于5V以下的低压小功率输出。自偏置同步整流用法简单易行,选择好MOSFET即告成功,此处不多述。
而对于12V以上至20V左右的同步整流则多采用控制驱动IC,这样可以收到较好的效果。ST公司的STSR2和STSR3可以很好地用于反激变换电路及正激变换电路。我们给出其参考电路。线性技术公司的LTC3900和LTC3901则是去年才推出的更优秀的同步整流控制IC.采用IC驱动的同步整流电路中,应该说最好的还是业界于2002年才正式使用的ZVS,ZCS同步整流电路,它将DC/DC转换器的效率带上了95%这一历史性台阶。
ZVS,ZCS同步整流只适用初级侧为对称型电路拓朴,磁芯可以双向工作的场合。即推挽、半桥以及全桥硬开关的电路。二次侧输出电压24V以下,输出电流较大的场合,这时可以获得最佳的效果。我们知道,对于传输同样功率高压小电流硬开关的损耗要比低压大电流硬开关时的损耗低很多。我们利用这种性能将PWM的输出信号经过变压器或高速光耦传输至二次侧,适当处理其脉宽后,再去驱动同步整流的MOSFET。让同步整流的MOSFET在其源漏之间没有电压,不流过电流时开启及关断。只要此时同步整流的MOSFET的导通电阻足够小,栅驱动电荷足够小,就能大幅度地提升转换效率。最高的95%的转换效率即是这样获得的,业界将其称为CoolSet,即冷装置,不再需要散热器和风扇了。
这种电路拓朴的输出电压在12V、15V输出时效率最高,电压降低或升高,效率随之下降。输出电压超过28V时,将与肖特基二极管整流的效果相当。输出电压低于5V时采用倍流整流会使变压器利用更充分,转换效率也会更高。
在ZVS及ZCS同步整流技术应用于工程获得成功后,人们在不对称电路拓朴中也在进行软开关同步整流控制的试验。例如已经有了有源箱位正激电路的同步整流驱动(NCP1560),双晶体管正激电路的同步整流驱动(LTC1681及LTC1698)但都未取得如对称型电路拓朴的ZVS,ZCS同步整流的优良效果。
近来,TI的工程师采用予捡测同步整流MOSFET开关状态,然后用数字技术调整MOSFET开关时间的方法突破性的做出ZVS的同步整流,从而解决了非对称电路的软开关同步整流,详情见专题论述。
近年来,复合电路拓朴也迅速发展起来,这种电路拓朴的集中目标都在于如何让同步整流部分的效率做到最佳状态。当初级电压变化一倍时,二次侧的占空比会相应缩小一半。而MOSFET的源漏电压却升高一倍。这意味着我们必须选择更高耐压的同步整流用MOSFET。我们知道,从半导体技术来分析MOSFET这种器件,当其耐压高一倍时,其导通电阻会扩大两倍。这对于用做同步整流十分不利,于是我们设想可否将二次侧同步整流的MOSFET的工作占空比定在48%~50%。这样我们选择比输出电压高2.5倍的MOSFET就可以了。例如:3.3V输出电压时同步整流MOSFET的耐压选12V档就可以了。而占空比变化大的我们就得选20V甚至30V的MOSFET,大家对比一下,12V的MOSFET会比20V的MOSFET的导通电阻小很多!正是基于这样一种思维,美国业界工程师先后搞出了多个复合电路拓朴。
第一家申请专利的是美国SynQor公司,它的电路为Buck加上双组交互forward组合技术。第一级是同步整流的Buck电路,将较高的输入电压(36~75V)降至某一中间值如26V。控制两管占空比在30~60%工作。第二级为两组交互forward电路。各工作在50%占空比,而且两者输出相位相差180o刚好互补。变压器仅为隔离使用,其磁密和电密都处在最佳状态。Buck级只要输出滤波电感,而forward级在整流后只要输出滤波电容。如此情况下SynQor产品获得了92%以上的转换效率。下面给出其电路,其控制IC就是我们熟知的UCC3843。它利用一颗IC巧妙地控制了上述全部功能。
第二家申请专利的是美国国家半导体公司,它的电路为Buck加上一组对称拓朴(推挽、半桥、全桥)。第一级与SynQor公司相同,而第二级则为对称型电路拓朴。这样就可方便地实现ZVS,ZCS同步整流,它的同步整流不仅是ZVS,ZCS软开关的,而且是最大占空比条件下的同步整流。如此情况下,它获得了94%的转换效率,下面给出其电路,见图:限于两级交联其效率毕竟为两级的乘积,因此这种方式的最高效率还是受到限制。
国家半导体公司给出的控制IC是当今最新颖独特的。首先它无需起动电路。可直接接100V以下高压。其次它驱动Buck电路的电平位移电路也做在IC内部。然后还同步地给出第二级的双路输出驱动。可直接驱动推挽电路,或加上驱动器IC驱动半桥或全桥电路,二次侧反馈的光耦可直接接至IC。此IC即今年刚问世的LM5041。
以上两种电路拓朴由于二次占空比不变还很适合多路输出。复合电路拓朴中还有一个新的发明就是推挽电路二次侧同步整流之后再加上Buck电路以实现多输出。采用一颗UCC3895再加上几个门电路形成了一个革命性的变革组合。其电路如下。这是一个很奇妙的思维及组合,其推挽及同步整流也都是处在最大占空比之下工作的,但电压却在变化着。在开关电源中普遍应用高频铁氧体磁芯,作为变压器和电感,由于铁氧体固有的磁滞特性,使得我们在设计所有各类电路拓朴时都不得不面对这个问题。在此之前绝大多数电路的做法都是用R、C、D网络将该部分磁能消耗掉,对变换器效率有几个百分点的影响。由于还有比它损耗比例更大的部位,所以注意力并没有放在此处。然而到了转换效率升至90%以上时,这种做法就绝对不可以了。从现在DC/DC工程化的产品来看,由于增加半导体器材(如MOSET、驱动IC等)是易如反掌的事。因此多数电路拓朴选用的是全桥电路拓朴及双晶体管正激电路。这两个电路是能使磁芯自动复位的最佳拓朴。对全桥电路与四个MOSFET并接上四个肖特基二极管即可,当对角线MOSFET同时关断时,变压器初级绕组励磁电感中的能量可自动地通过另两个二极管回馈至供电电源。如果工作频率不高,或选用了具快恢复性能体二极管的MOSFET,就可以省掉这四支肖特基二极管。这很适合100W以上的大功率DC/DC。而对于100W以下的DC/DC则多选双晶体管正激电路。它的复位原理已人尽皆知,唯一的不足就是最大只有50%的占空比。对小功率的forward电路近年来开发出一个谐振式自动复位电路。用了几个无源元件就能基本无损耗地将磁芯复位,其不足点也是最大占空比仅有50%,此外就是主功率MOSFET的耐压要提升约30%。
目前,美国几家高级DC/DC制造商已经在高功率密度的DC/DC中使用了小型微处理器的技术。首先它可以取代很多模拟电路,减少了模拟元件的数量,它可以取代窗口比较器 、检测器、锁存器等完成电源的起动、过压保护、欠压锁定、过流保护、短路保护及过热保护等功能。由于这些功能都是依靠改变在微控制器上运行的微程序。所以技术容易保密。此外,改变微控制器的微程序还可以适应同一印板生产多品种DC/DC的要求,简化了器材准备、生产管理等的复杂工作。由于它是数字化管理,它的保护功能及控制功能比采用模拟电路要精密得多,有了它还可以解决多个模块并联工作的排序和均流问题。
第二代微控制器控制的DC/DC还没有将典型的开关电源进行全面的数字闭环控制,但是已经没有PWM IC出现在电路中,一个小型MCU参与DC/DC的整个闭环控制。但PWM部分仍是模拟控制,现在,采用DSP数字信号处理器参与脉宽调制,最大、最小占空比控制、频率设置、降频升频控制、输出电压的调节等工作,以及全部保护功能的DC/DC变换器已经问世。这就是使用TI公司的TSM320L2810控制的开关电源,是全数字化的电源,这时DC/DC的数字化进程就真正地实现了。好在半导体技术的进步能很大幅度地降低芯片成本,因此,电源技术的数字化革命应该说号角已经吹响。该让我们向在模拟领域进行电源技术攀登的工程师们开始敲起数字化的进行曲了!使用DSP控制的数字电源我们另文介绍。
总结上述调研我们可以看到,半导体技术进步是DC/DC技术变化的强大动力。(1) MOSFET的技术进步给DC/DC模块技术带来的巨大变化,同步整流技术的巨大进步。(2) Schottky技术的进步。
(3) 控制及驱动IC的进步。
a. 高压直接起动
b. 高压电平位移驱动取代变压器驱动
c. ZVS,ZCS驱动器贡献给同步整流最佳效果
d. 光耦反馈直接接口
PWM IC经历了电压型=&电流型=&电压型的转换,又经历了硬开关=&软开关=&硬开关的否定之否定变化。掌握优秀控制IC是制作优秀DC/DC的前提和关键。
(4) 微控制器及DSP进入DC/DC是技术发展的必由之路。
(5) 磁芯技术的突破是下一代DC/DC技术进步的关键,也是巨大难题。
对非隔离DC/DC的讨论在
对AC/DC的降频、频率抖动、无载损耗控制、高压起动等以及PFC的讨论在
把直流电压变换为另一数值的直流电压最简单方法是串联一个电阻,这样不涉及变频的问题,显得很简单,但是效率低。用一个半导体功率器件作为开关,使带有滤波器(L或/和C)的负载线路与直流电压一会儿接通,一会儿断开,则负载上也得到另一个直流电压,这就是DC-DC的基本手段,类似于“斩波”(Chop)作用。
一个周期Ts内,电子开关接通时间ton所占整个周期Ts的比例,称接通占空比D,D=ton/Ts;断开时间toff所占Ts比例,称断开占空比D’,D’= toff/Ts。很明显,接通占空比越大,负载上电压越高;1/Ts=fs称开关频率,fs越高,负载上电压也越高。这种DC-DC变换器中的开关都在某一固定频率下(如几百千赫兹)工作,这种保持开关频率恒定,但改变接通时间长短(即脉冲的宽度),使负载变化时,负载上电压变化不大的方法,称脉宽调制法(Pulse Width Modulation,简称为PWM)。由于电子开关按外加控制脉冲而通断,控制与本身流过的电流、二端所加的电压无关,因此电子开关称为“硬开关”。很明显,由于硬开关关断和开通时,开关上同时存在电压、电流,损耗是比较大的,但无论如何比串联电阻变换方法损耗小得多。这就是开关电源的优点之一。
凡用脉宽调制方式控制电子开关的开关变换器,称为PWM开关变换器。它是以使用“硬开关”为主要特征的。
另一类称之为软开关。凡用控制方法使电子开关在其两端电压为零时导通电流,或使流过电子开关电流为零时关断,此开关称为软开关。软开关的开通、关断损耗理想值为零。由于损耗小,开关频率可提高到兆赫级,开关电源体积、重量显著减少。
可用谐振(Resonance)的方法使电子开关上电压或电流为零,谐振分为串联谐振和并联谐振。在开关电源电路中加的电压是直流电压,直流电压加在串联的LC时,电路中电流按正弦规律无阻尼振荡,其频率即电路的谐振频率,或称振荡频率。利用谐振现象,电子开关器件两端电压按正弦规律振荡,当振荡到零时,使电子开关导通,流过电流,此法称零电压开通(Zero Voltage Switching 简称ZVS)。同理,当流过电子开关器件的电流振荡到零时,使电子开关断开,此法称为零电流关断(Zero Current Switching 简称ZCS)。
利用谐振现象,使电子开关器件上电压或电流按正弦规律变化,以创造零电压开通或零电流关断的条件,以这种技术为主导的变换器称谐振变换器,它有串联和并联谐振变换器两种。如果在桥式变换器(用谐振式方法控制)桥的输出端为串联LC网络,再接变压器原边绕组(包括带副边整流电路),称为串联谐振变换器。在桥式变换器串联LC网络的电容两端并联变压器原边绕组(包括带副边整流电路),称为并联谐振变换器。
由于正向和反向LC回路值不一样,即振荡频率不同,电流幅值也不同,所以振荡不对称。一般正向正弦半波大于负向正弦半波,所以常称为准谐振。无论是串联LC网络,或并联的LC网络都会产生准谐振。
利用准谐振现象,使电子开关器件上的电压或电流按正弦规律变化,从而创造了零电压或零电流的条件,以这种技术为主导的变换器称为准谐振变换器。在单端、半桥或全桥变换器中,利用寄生电感和电容(如变压器漏感,半导体功率管或整流管的结电容)或外加谐振电感和电容,可得到相应的准谐振变换器。
谐振回路、参数可以超过两个,例如三个或更多,称为多谐振变换器。
为保持输出电压不随输入电压变化而变化,不随负载变化而变化(或基本不变),谐振、准谐振和多谐振变换器主要靠调整开关频率,所以是调频系统。{{分页}}
调频系统不如PWM开关那样易控,加上谐振、准谐振、多谐振电路谐振电压(或电流)峰值高,开关受的应力大,因此这几年热门的研究课题是零开关-PWM变换器和零转换-PWM变换器。
零开关-PWM变换器是指在准谐振变换器中,增加一个辅助开关控制的电路,使变换器一周期内,一部分时间按ZCS或ZVS准谐振变换器工作,另一部分时间按PWM变换器工作。前者称ZCS-PWM变换器,后者称为ZVS-PWM变换器。这样,变换器既有电压过零(或电流过零)控制的软开关特点,又有PWM恒频调宽的特点。这时谐振网络中的电感是与主开关串联的。零转换-PWM变换器与零开关-PWM变换器并无本质上的差别,也是软开关与PWM的结合,只不过谐振网络是与主开关并联的。
从上面所述,DC-DC可分成PWM式、谐振式和它们的结合式。每一种方式中从输入与输出之间是否有变压器隔离,可以分成有隔离、无隔离两类。每一类中又有六种拓扑:Buck、Boost、Buck-Boost、Cuk、Sepic和Zeta。由此可见DC-DC基本电路就不胜其数了。多数电路都具有个性,有典型应用价值,也有的电路并无实用价值。
以上是从电路拓扑来分类,还有从其他角度、特征来分类的。例如,若按激励形式不同,可分为自激式和他激式两种。
自激式包括单管式变换器和推挽式变换器两种。他激式包括调频、调宽、调幅、谐振等几种。目前应用较广的是调宽型(PWM),它包括正激式、反激式、半桥式和全桥式。谐振式中有串联谐振、并联谐振、串并联谐振等线路;按谐振式的开关什么时候接通来分,又可分为零电流开关和零电压开关等。
若按控制信号的隔离方法,则可分为直流式、光电耦合式、变压器式、磁放大器式等。有些线路通过电子器件完成电压-频率,或者频率-电压的转换工作之后,用变压器与控制信号隔离。
根据电感电流是否连续,DC-DC变换器有两种工作模式。一种是连续导电模式(CCM,Continuous Conduction Mode),DC-DC在重载下通常工作于这种模式;另一种是不连续导电模式(DCM,Discontinuous Conduction Mode),DC-DC变换器在轻载下工作于这种模式。DC/DC变换器的发展与应用1引言
直流-直流变换器(DC/DC)变换器广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业。按额定功率的大小来划分,DC/DC可分为750W以上、750W~1W和1W以下3大类。进入20世纪90年代,DC/DC变换器在低功率范围内的增长率大幅度提高,其中6W~25WDC/DC变换器的增长率最高,这是因为它们大量用于直流测量和测试设备、计算机显示系统、计算机和军事通讯系统。由于微处理器的高速化,DC/DC变换器由低功率向中功率方向发展是必然的趋势,所以251W~750W的DC/DC变换器的增长率也是较快的,这主要是它用于服务性的医疗和实验设备、工业控制设备、远程通讯设备、多路通信及发送设备,DC/DC变换器在远程和数字通讯领
域有着广阔的应用前景。
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁、列车、电动车的无级变速和控制,同时使上述控制具有加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约20%~30%的电能。直流斩波器不仅能起到调压的作用(开关电源),同时还能起到有效抑制电网侧谐波电流噪声的作用。
DC/DC变换器现已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为0.31W/cm3~1.22W/cm3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构。目前,已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。
电子产业的迅速发展极大地推动了开关电源的发展。高频小型化的开关电源及其技术已成为现代电子设备供电系统的主流。在电子设备领域中,通常将整流器称为一次电源,而将DC/DC变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前,在电子设备中用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT实现高频工作,开关频率一般控制在50kHz~100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。因为电子设备中所用的集成电路的种类繁多,其电源电压也各不相同,在电子供电系统中,采用高功率密度的高频DC/DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,可以大大减小损耗、方便维护,且安装和增容非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因为电子设备容量的不断增加,其电源容量也将不断增加。
2电力电子器件
功率变换技术高速发展的基础是电力电子器件和控制技术的高速发展,在21世纪,电力电子器件将进入第4代即智能化时代,具有如下显著的特征。
2.1高性能化
高性能化主要包括高电压、大容量、降低导通电压低损耗、高速度和高可靠性等4个方面。如IGBT的电流可达2kA~3kA、电压达到4kV~6kV,降低损耗是所有复合器件的发展目标。预计在21世纪IGBT、智能化功率模块(IPM)等器件的导通电压可降到1V以下,而MOSFET、IBGT、MCT等器件的应用频率将达到兆赫数量级。2.2智能化和集成化
智能化的发展是系统智能集成(ASIPM),即将电源电路、各种保护以及PWM控制电路等都集成在一个芯片上,制成一个完整的功率变换器IC。集成电力电子模块(IPEM)是将驱动、自动保护、自诊断功能的IC与电力电子器件集成在一个模块中。由于不同的元器件、电路、集成电路的封装或相互连接产生的寄生参数已成为决定电力电子系统性能的关键,所以采用IPEM方法可减少设计工作量,便于生产自动化,提高系统质量、可靠性和可维护性,缩短设计周期,降低产品成本。
IPEM与IPM或PIC的不同之处在于后者是单层单片集成,一维封装;而前者是高电压、大电流、多层多片集成,三维封装,结构更复杂,多方向散热,其热设计也更加重要。IPEM研究课题中有待解决的基本问题是结构的确定和通用性,新型电力电子器件评估的主要方面是开关单元、拓扑结构、高电压大电流功率器件的单片集成。大功率无源器件集成、IPEM三维封装(控制寄生参数,将寄生影响控制在最小范围)、热管理、IPEM设计软件、接口与系统的兼容性、IPEM性能预测、可靠性冗余和容错等都需要跨学科研究。因为与现代电力电子学相关的学科十分广泛,包括基础理论学科,如固体物理、电磁学、电路理论;专业理论学科如电力系统、电子学、系统与控制、电机学及电气传动、通信理论、信号处理、微电子技术;及电磁测量、计算机仿真、CAD等,覆盖了材料、器件、电路与控制、磁学、热设计、封装、CAD集成、制造、电力电工应用等专业技术。就目前我国电力电子技术发展的现状而言,迫切需要跨学科并运用多种专业技术进行联合研究,以适应当今国际电力电子科技前沿技术的发展。
模块化有两方面的含义,其一是指功率器件的模块化,其二是指单元的模块化。常见的功率器件模块含有1单元、2单元、6单元直至7单元,包括开关器件和与之串并联的续流二极管,实质上都属于&标准&功率模块(SPM)。近年来,有些公司把开关器件的驱动保护电路也装到功率模块中构成IPM,不但缩小了整机的体积,而且更加方便了整机的设计与制造。实际上,由于频率不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,产品性能优良。它类似于微电子电路中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,可缩小整机体积,更重要的是取消了传统连线,把寄生参数值降到最小,从而把器件承受的电应力降至最低,提高了系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和冗余度的增加,从提高可靠性方面考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量情况下可满足大电流输出的要求,而且通过增加相对于整个系统来说功率很小的冗余电源模块,极大地提高了系统的可靠性,即使万一出现单个模块故障,也不会影响系统的正常工作,而且可提供充分的时间进行修复。3新的DC/DC变换器技术
3.1VRM技术
就DC/DC变换器而言,由于现代微处理器和一些超高速大规模集成电路芯片,如Intel、Pentium、Pro等,要求在低电压(2.4V~3.3V)、大电流(&13A)状态下工作,而其直流母线电压通常为5V~12V。这样,就需要将直流母线电压通过DC/DC变换器进行变换,通常用VRM来实现。显然,随着芯片集成密度、工作速度的进一步提高,芯片的工作电压将进一步下降,工作电流进一步增大。人们对VRM提出了新的挑战,要求VRM具有非常快速的负载电流响应,在保证足够小的体积的同时,还要具有高效率。要使VRM具有快速的负载电流动态响应,传统的解决办法是在VRM的输出端并联很多容量很大、等效串联电阻很小的退耦电容器。显然,该方法存在如下问题:
1)退耦电容器体
积很大,而现代微处理器对VRM的体积有着严格的要求。
2)退耦电容器仅能改善动态响应的影响阶段,对后阶段及总的动态响应时间没有作用。
一种交错叠加型准方波抵消纹波的变换拓扑结构是其最新的解决方案,如图1所示,该结构在保证要求输出纹波的前提下,不但可以大大减少输出滤波电容器的容量,而且能大大减少VRM输出滤波电感的电感量。除此以外,为了提高VRM的动态响应,还必须力求减小供电母线的引线电感,其最有效的解决方案是将VRM作成“装在印刷板上”的直流分布式电源形式,直接装在负载附近。另一方面,还要求VRM本身具有十分小的引线电感,为了保证VRM具有足够的效率,必须采用同步整流器和漏感很小的超薄型变压器。
交错叠加型准方波抵消纹波的变换拓扑结构
3.2软开关技术
为了缩小DC/DC变换器的体积,提高功率密度,改善动态响应,高频化是DC/DC变换器技术发展的必然趋势。但高频化又会产生新的问题,如开关损耗及无源元件的损耗增大,高频寄生参数及高频EMI问题等。应用各种软开关技术(包括无源无损软开关技术,有源软开关技术)可以减少开关损耗,提高效率。
1994年2月,IEEE电力电子学会组织“功率变换技术2000年展望专题研讨会”,就DC/DC及AC/DC功率变换器的发展趋势与需求进行探讨,指出高功率密度DC/DCZVS开关变换器与器件性能、无源元件、封装技术等有很大关系。与1994年对比,2000年,在保证可靠性增加一倍的基础上,这种变换器功率密度提高一倍,成本降低一半。
进入20世纪90年代,各种软开关技术,如ZVS/ZCS―PWM、ZVT/ZCT―PWM、移相全桥ZVS―PWM、有源箝位ZVS―PWM等的开发和应用都有较大的发展。美国Vicor公司生产的48V/600WDC/DC开关变换器模块,由于采用高频软开关技术,功率密度达到7.32W/cm3,效率为90%,而3MHz、低电压(1V)输出的便携式DC/DC变换器也正在研究开发中。3.3高频磁技术
随着电力电子电路与系统的高频化,在低频下可以忽略的某些寄生参数,在高频下将对某些电路性能(开关尖峰能量、噪声水平等)产生重大影响,尤其是磁元件的涡流、漏电感、绕组交流电阻(Rac)和分布电容等在低频和高频下的表现有很大不同。
20世纪90年代高频磁技术研究的另一项成果是适用于薄型高频开关变换器的薄型平面变压器,其厚度小于1cm,呈扁平状。绕组采用铜箔或板型印刷电路,省去绕组骨架,有利于散热,漏感小,集肤效应损耗小。2000年,磁性材料研究的主要方向是:(1)高温超导;(2)将铁氧体或其它薄膜材料高密度集成在硅片上或硅材料集成在铁氧体上;(3)录音磁头用薄膜材料高密度集成在硅片上或硅材料集成在铁氧体上。
将变压器和电感器集成在一起可缩小磁元件的体积,应用混合功率封装技术和集成磁技术可使航空用0.5MHz、薄型100W半桥式DC/DC变换器的厚度仅为5.08mm,功率密度达9.15W/cm3。压电变压器的应用也使功率变换器电路小型化,如输出24W的2MHz的DC/DC变换器,应用压电变压器的变比为5:1,在DC/DC开关电源领域有着广阔的应用前景,压电变压器
的应用将开创DC/DC变换器小型化的发展之路。
4高频开关电源的发展趋势
在电力电子技术及各种电源系统中,开关电源技术处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高频开关电源技术,其体积和重量都会大幅度下降,而且可极大地提高电源的利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术更是各种大功率开关电源(逆变焊机、通信电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。
理论分析和实践经验表明,电气产品的变压器、电感器和电容器的体积和重量与供电频率的平方根成反比。所以,当我们把频率从工频50Hz提高400倍到20kHz时,则电气设备的体积和重量大体下降至工频设计的5%~l0%。无论是逆变式整流焊机,还是通信电源用的开关式整流器,都是基于这一原理。同样,传统&整流行业&的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,可节约主要材料90%或更多,还可节电30%或更多。由于功率器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,可节能、节水、节约材料,由此带来相当可观的经济效益,更可体现技术含量的价值。
在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在20世纪70年代,电力电子技术完全建立在模拟电路基础上。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制,避免模拟信号的畸变失真,减小杂散信号的干扰(提高抗干扰能力),便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在20世纪90年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是诸如印制版的布图、电磁兼容问题以及功率因数校正等问题的解决,离不开模拟技术,但是对于智能化的开关电源,当用计算机控制时,就需要数字化技术。4.3绿色化
电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次是这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种校正功率因数的方法,为2l世纪批量生产各种绿色开关电源奠定了基础。
现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的拓扑电路的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大地发挥各种功率器件的特性,使器件性能对开关电源性能的不利影响减至最小,新的电源拓扑电路和新型控制技术,可使功率开关在零电压或零电流状态下工作,从而可大大提高工作频率,提高开关电源的工作效率,设计出性能优良的开关电源。
总之,电力电子及开关电源技术随应用需求而不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着IC技术的发展,以开关电源技术为核心的电子设备用开关电源,仅国内就有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源已是大势所趋,因此,同样具有几十亿市场需求的电力操作电源系统的国内市场正在启动,并将很快发展起来,另外,还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。
这是收集李龙文老师发表的文章,这些文章对我学习电源技术可以说是具体非常大的指导作用,拿出来和大家一起分享!简单介绍一下李龙文老师:李龙文,1966年北京工业大学电机系毕业,从事线性IC设计研发,曾任北京半导体五厂总工程师,1996年评为教授级高级工程师。在国内最早研发成功 7800 系列、7900 系列三端线性稳压器,在国内最早研发成功SG3525、UC3842、TL431等开关电源用系列PWM及稳压基准IC,先后获北京市科技成果三等奖,国企退休后先后任某电源公司研发经理及顾问,现为中国电源学会常务理事、《电源技术应用》编委。
DC/DC变换器技术的现状及趋势
作者:李龙文
摘要:从工程实际的角度介绍了DC/DC技术的现状及发展,给出当今国际顶级DC/DC产品的实用技术、专利技术及普遍采用的特有技术。指出了半导体技术进步给DC/DC技术带来的巨大变化。并指出了DC/DC的数字化方向。
关键词:有源箱位软开关 同步整流 级联拓朴 MCU控制 高效率高功率密度DC/DC分布式电源系统应用的普及推广以及电池供电移动式电子设备的飞速发展,其电源系统需用的DC/DC电源模块越来越多。对其性能要求越来越高。除去常规电性能指标以外,对其体积要求越来越小,也就是对其功率密度的要求越来越高,对转换效率要求也越来越高,也即发热越来越少。这样其平均无故障工作时间才越来越长,可靠性越来越好。因此如何开发设计出更高功率密度、更高转换效率、更低成本更高性能的DC/DC转换器始终是近二十年来电力电子技术工程师追求的目标。例如:二十年前Lucent公司开发出第一个半砖DC/DC时,其输出功率才30W,效率只有78%。而如今半砖的DC/DC输出功率已达到300W,转换效率高达93.5%。
从八十年代末起,工程师们为了缩小DC/DC变换器的体积,提高功率密度,首先从大幅度提高开关电源的工作频率做起,但这种努力结果是大幅度缩小了体积,却降低了效率。发热增多,体积缩小,难过高温关。因为当时MOSFET的开关速度还不够快,大幅提高频率使MOSFET的开关损耗驱动损耗大幅度增加。工程师们开始研究各种避开开关损耗的软开关技术。虽然技术模式百花齐放,然而从工程实用角度仅有两项是开发成功且一直延续到现在。一项是VICOR公司的有源箝位ZVS软开关技术;另一项就是九十年代初诞生的全桥移相ZVS软开关技术。
有源箝位技术历经三代,且都申报了专利。第一代系美国VICOR公司的有源箝位ZVS技术,其专利已经于2002年2月到期。VICOR公司利用该技术,配合磁元件,将DC/DC的工作频率提高到1MHZ,功率密度接近200W/in3,然而其转换效率却始终没有超过90%,主要原因在于MOSFET的损耗不仅有开关损耗,还有导通损耗和驱动损耗。特别是驱动损耗随工作频率的上升也大幅度增加,而且因1MHZ频率之下不易采用同步整流技术,其效率是无法再提高的。因此,其转换效率始终没有突破90%大关。
为了降低第一代有源箝位技术的成本,IPD公司申报了第二代有源箝位技术专利。它采用P沟MOSFET在变压器二次侧用于forward电路拓朴的有源箝位。这使产品成本减低很多。但这种方法形成的MOSFET的零电压开关(ZVS)边界条件较窄,在全工作条件范围内效率的提升不如第一代有源箝位技术,而且PMOS工作频率也不理想。为了让磁能在磁芯复位时不白白消耗掉,一位美籍华人工程师于2001年申请了第三代有源箝位技术专利,并获准。其特点是在第二代有源箝位的基础上将磁芯复位时释放出的能量转送至负载。所以实现了更高的转换效率。它共有三个电路方案:其中一个方案可以采用N沟MOSFET。因而工作频率较高,采用该技术可以将ZVS软开关、同步整流技术、磁能转换都结合在一起,因而它实现了高达92%的效率及250W/in3以上的功率密度(即四分之一砖DC/DC做到250W功率输出及92%以上的转换效率)。我们给出三代产品的等效电路,读者可从其细节品味各自的特色。有关有源箝位技术近年论文论述颇多,此处不多赘述。
全桥移相ZVS软开关技术,从90年代中期风靡大功率及中功率开关电源领域。该电路拓朴及控制技术在MOSFET的开关速度还不太理想时,对DC/DC变换器效率的提升起了很大作用。但是工程师们为此付出的代价也不小。第一个代价是要增加一个谐振电感。它的体积比主变压器小不了多少(约1/2左右),它也存在损耗,此损耗比输出滤波电感损耗也小不了太多。第二个代价是丢失了8~10%的占空比,这种占空比的丢失将造成二次侧的整流损耗。所以弄得不好,反而有得不偿失的感觉。第三,谐振元件的参数需经过调试,能适应工业生产用的准确值的选定是要花费较多的时间,试验成本较高。
此外,因同步整流给DC/DC效率的提高带来实惠颇多,而全桥移相对二次侧同步整流的控制效果并不十分理想。例如:第一代PWM ZVS全桥移相控制器,UC3875及UCC3895只控制初级侧。若要提供准确的控制同步整流的信号需另加逻辑电路。第二代全桥移相PWM控制器如LTC1922-1、LTC,虽然增加了对二次侧同步整流的控制信号,在做好ZVS软开关的同时做好二次侧的同步整流。但仍旧不能十分有效地控制好二次侧的ZVS ZCS同步整流,而这是提高DC/DC变换器效率最有效的措施。UCC的另一个重大改进是减小谐振电感的感量,这不仅缩小了谐振电感的体积,而且降低了损耗,占空比的丢失也减小了许多.这里我们给出LTC3722加上同步整流的控制电路,由业界工程师们自己去分析对照。在DC/DC业界,应该说,软开关技术的开发、试验、直到用于工程实践,费力不小,但收效却不是太大。花在这方面的精力和资金还真不如半导体业界对MOSFET技术的改进。经过几代MOSFET设计工业技术的进步,从第一代到第八代。光刻工艺从5μM进步到0.5μM。完美晶格的外延层使我们将材料所选择的电阻率大幅下降。加上进一步减薄的晶片。优秀的芯片粘结焊接技术,使当今的MOSFET (例如80V40A)导通电阻降至5mΩ以下,开关时间已小于20ns,栅电荷仅20nc,而且是在逻辑电平下驱动即可。在这样的条件下,同步整流技术获得了极好的效果,几乎使DC/DC的效率提高了将近十个百分点。效率指标已经普遍进入了&90%的范围。
目前,自偏置同步整流已经普遍用于5V以下的低压小功率输出。自偏置同步整流用法简单易行,选择好MOSFET即告成功。而对于12V以上至20V左右的同步整流则多采用控制驱动IC,这样可以收到较好的效果。ST公司的STSR2和STSR3可以很好地用于反激变换电路及正激变换电路。我们给出其参考电路。线性技术公司的LTC3900和LTC3901则是去年才推出的更优秀的同步整流控制IC.采用IC驱动的同步整流电路中,应该说最好的还是业界于2002年才正式使用的ZVS,ZCS同步整流电路,它将DC/DC转换器的效率带上了95%这一历史性台阶。
ZVS、ZCS同步整流只适用初级侧为对称型电路拓朴,磁芯可以双向工作的场合。即推挽、半桥以及全桥硬开关的电路。二次侧输出电压24V以下,输出电流较大的场合,这时可以获得最佳的效果。我们知道,对于传输同样功率高压小电流硬开关的损耗要比低压大电流硬开关时的损耗低很多。我们利用这种性能将PWM的输出信号经过变压器或高速光耦传输至二次侧,适当处理其脉宽后,再去驱动同步整流的MOSFET。让同步整流的MOSFET在其源漏之间没有电压,不流过电流时开启及关断。只要此时同步整流的MOSFET的导通电阻足够小,栅驱动电荷足够小,就能大幅度地提升转换效率。最高的95%的转换效率即是这样获得的,业界将其称为CoolSet,即冷装置,不再需要散热器和风扇了。
这种电路拓朴的输出电压在12V、15V输出时效率最高,电压降低或升高,效率随之下降。输出电压超过28V时,将与肖特基二极管整流的效果相当。输出电压低于5V时采用倍流整流会使变压器利用更充分,转换效率也会更高。在ZVS及ZCS同步整流技术应用于工程获得成功后,人们在不对称电路拓朴中也在进行软开关同步整流控制的试验。例如已经有了有源箱位正激电路的同步整流驱动(NCP1560),双晶体管正激电路的同步整流驱动(LTC1681及LTC1698)但都未取得如对称型电路拓朴的ZVS,ZCS同步整流的优良效果。近来,TI的工程师采用予捡测同步整流MOSFET开关状态,然后用数字技术调整MOSFET开关时间的方法突破性的做出ZVS的同步整流,从而解决了非对称电路的软开关同步整流。
近年来,复合电路拓朴也迅速发展起来,这种电路拓朴的集中目标都在于如何让同步整流部分的效率做到最佳状态。当初级电压变化一倍时,二次侧的占空比会相应缩小一半。而MOSFET的源漏电压却升高一倍。这意味着我们必须选择更高耐压的同步整流用MOSFET。我们知道,从半导体技术来分析MOSFET这种器件,当其耐压高一倍时,其导通电阻会扩大两倍。这对于用做同步整流十分不利,于是我们设想可否将二次侧同步整流的MOSFET的工作占空比定在48%~50%。这样我们选择比输出电压高2.5倍的MOSFET就可以了。例如:3.3V输出电压时同步整流MOSFET的耐压选12V档就可以了。而占空比变化大的我们就得选20V甚至30V的MOSFET,大家对比一下,12V的MOSFET会比20V的MOSFET的导通电阻小很多!正是基于这样一种思维,美国业界工程师先后搞出了多个复合电路拓朴。
第一家申请专利的是美国SynQor公司,它的电路为Buck加上双组交互forward组合技术。第一级是同步整流的Buck电路,将较高的输入电压(36~75V)降至某一中间值如26V。控制两管占空比在30~60%工作。第二级为两组交互forward电路。各工作在50%占空比,而且两者输出相位相差180o刚好互补。变压器仅为隔离使用,其磁密和电密都处在最佳状态。Buck级只要输出滤波电感,而forward级在整流后只要输出滤波电容。如此情况下SynQor产品获得了92%以上的转换效率。下面给出其电路,其控制IC就是我们熟知的UCC3843。它利用一颗IC巧妙地控制了上述全部功能。
第二家申请专利的是美国国家半导体公司,它的电路为Buck加上一组对称拓朴(推挽、半桥、全桥)。第一级与SynQor公司相同,而第二级则为对称型电路拓朴。这样就可方便地实现ZVS、ZCS同步整流,它的同步整流不仅是ZVS、ZCS软开关的,而且是最大占空比条件下的同步整流。如此情况下,它获得了94%的转换效率,下面给出其电路,见图:限于两级交联其效率毕竟为两级的乘积,因此这种方式的最高效率还是受到限制。
国家半导体公司给出的控制IC是当今最新颖独特的。首先它无需起动电路。可直接接100V以下高压。其次它驱动Buck电路的电平位移电路也做在IC内部。然后还同步地给出第二级的双路输出驱动。可直接驱动推挽电路,或加上驱动器IC驱动半桥或全桥电路,二次侧反馈的光耦可直接接至IC。此IC即LM5041。
以上两种电路拓朴由于二次占空比不变还很适合多路输出。复合电路拓朴中还有一个新的发明就是推挽电路二次侧同步整流之后再加上Buck电路以实现多输出。采用一颗UCC3895再加上几个门电路形成了一个革命性的变革组合。其电路如下。这是一个很奇妙的思维及组合,其推挽及同步整流也都是处在最大占空比之下工作的,但电压却在变化着。在开关电源中普遍应用高频铁氧体磁芯,作为变压器和电感,由于铁氧体固有的磁滞特性,使得我们在设计所有各类电路拓朴时都不得不面对这个问题。在此之前绝大多数电路的做法都是用R、C、D网络将该部分磁能消耗掉,对变换器效率有几个百分点的影响。由于还有比它损耗比例更大的部位,所以注意力并没有放在此处。然而到了转换效率升至90%以上时,这种做法就绝对不可以了。从现在DC/DC工程化的产品来看,由于增加半导体器材(如MOSET、驱动IC等)是易如反掌的事。因此多数电路拓朴选用的是全桥电路拓朴及双晶体管正激电路。这两个电路是能使磁芯自动复位的最佳拓朴。
对全桥电路与四个MOSFET并接上四个肖特基二极管即可,当对角线MOSFET同时关断时,变压器初级绕组励磁电感中的能量可自动地通过另两个二极管回馈至供电电源。如果工作频率不高,或选用了具快恢复性能体二极管的MOSFET,就可以省掉这四支肖特基二极管。这很适合100W以上的大功率DC/DC。而对于100W以下的DC/DC则多选双晶体管正激电路。它的复位原理已人尽皆知,唯一的不足就是最大只有50%的占空比。对小功率的forward电路近年来开发出一个谐振式自动复位电路。用了几个无源元件就能基本无损耗地将磁芯复位,其不足点也是最大占空比仅有50%,此外就是主功率MOSFET的耐压要提升约30%。目前,美国几家高级DC/DC制造商已经在高功率密度的DC/DC中使用了小型微处理器的技术。首先它可以取代很多模拟电路,减少了模拟元件的数量,它可以取代窗口比较器 、检测器、锁存器等完成电源的起动、过压保护、欠压锁定、过流保护、短路保护及过热保护等功能。由于这些功能都是依靠改变在微控制器上运行的微程序。所以技术容易保密。此外,改变微控制器的微程序还可以适应同一印板生产多品种DC/DC的要求,简化了器材准备、生产管理等的复杂工作。由于它是数字化管理,它的保护功能及控制功能比采用模拟电路要精密得多,有了它还可以解决多个模块并联工作的排序和均流问题。
第二代微控制器控制的DC/DC还没有将典型的开关电源进行全面的数字闭环控制,但是已经没有PWM IC出现在电路中,一个小型MCU参与DC/DC的整个闭环控制。但PWM部分仍是模拟控制,现在,采用DSP数字信号处理器参与脉宽调制,最大、最小占空比控制、频率设置、降频升频控制、输出电压的调节等工作,以及全部保护功能的DC/DC变换器已经问世。这就是使用TI公司的TSM320L2810控制的开关电源是全数字化的电源,这时DC/DC的数字化进程就真正地实现了。好在半导体技术的进步能很大幅度地降低芯片成本,因此,电源技术的数字化革命应该说号角已经吹响。该让我们向在模拟领域进行电源技术攀登的工程师们开始敲起数字化的进行曲了!
下面我们介绍世界著名DC/DC开发制造商的产品特色。1. Galaxy pwr公司世界顶级、全桥自动复位硬开关ZVSZCS同步整流。全部工作用微控制器MCU控制,效率94~95%。2. Synqor两级并联,Buck+双互补forward同步整流微控制器,PWM IC和MCU IC控制,效率92~93%。3. Glary第三代有源箱位,双互补forward并联,同步整流,效率92%,功率密度240W/in3,1/4砖250W。4. DIDT二次侧PWM控制的初级半桥及全桥。ZVS,ZCS同步整流,效率91%。5. Ericsson全桥硬开关ZVS,ZCS同步整流,效率93%。6. VICOR第一代有源箱位,大功率输出高功率密度,89%效率。7. Artesyn互补有源箱位Push-pull,效率90%,自偏置同步整流。8. TYCO有源箱位forward,同步整流,世界DC/DC的主导商,世界标准的创立者。9. Lambda有源箱位P-沟MOSFET有源箱位,自偏置同步整流。10. IPD公司第二代有源箝位自偏置同步整流效率90.5%。
总结上述调研我们可以看到,半导体技术进步是DC/DC技术变化的强大动力。(1) MOSFET的技术进步给DC/DC模块技术带来的巨大变化,同步整流技术的巨大进步。(2) Schottky技术的进步。(3) 控制及驱动IC的进步a. 高压直接起动b. 高压电平位移驱动取代变压器驱动c. ZVS,ZCS驱动器贡献给同步整流最佳效果。d. 光耦反馈直接接口。PWM IC经历了电压型=&电流型=&电压型的转换,又经历了硬开关=&软开关=&硬开关的否定之否定变化。掌握优秀控制IC是制作优秀DC/DC的前提和关键。(4) 微控制器及DSP进入DC/DC是技术发展的必由之路。(5) 磁芯技术的突破是下一代DC/DC技术进步的关键,也是巨大难题。
上一篇: 下一篇:
All rights reserved Powered by
copyright &copyright 。文档资料库内容来自网络,如有侵犯请联系客服。

我要回帖

更多关于 软件能申请专利吗 的文章

 

随机推荐