光伏发电最大功率跟踪场站中AGC调控后,理论功率,可用功率是否应该随着实时功率的降低而降低?

搞定零延时前端智能
USB Type-C PD充电器快设计
实践理解应用RTOS各组件
物联网安全从小白到大师
实战让你秒懂mbed OS
&08-08&20:00
&08-15&20:00
&08-11&20:00
&08-25&10:00
移入鼠标可放大二维码
光伏电站限电损失情况如何应对?
来源:光能杂志 作者:佚名日 11:10
[导读] 随着国家生态环境和气候变化形势的日益严峻,以优先发展可再生能源为特征的能源革命已经成为必然趋势。本文以甘肃某电站的限电情况为例,简要介绍限电带来的发电量损失计算方法及技术对策。
  我国近几年光伏电站的建设速度非常快,但配套建设还是无法跟上,加上西部地区消纳光伏电能的能力有限,如甘肃、新疆、青海等地,很多光伏电站遭遇了限电问题的困局,带来了巨大的能源浪费,部分月份限电比例达到90%,光伏电站的投资收益率大打折扣,而且对光伏未来的发展也是非常不利的,必须加强配套电网送出线路的建设,将光伏电力外送到消纳能力较强的地区,或者改善火电、光伏、风电等能源利益竞争所产生的矛盾,进一步调整能源结构,优先使用光伏电力。
  随着国家生态环境和气候变化形势的日益严峻,以优先发展可再生能源为特征的能源革命已经成为必然趋势。本文以甘肃某电站的限电情况为例,简要介绍限电带来的发电量损失计算方法及技术对策。
  1.有功功率控制系统(AGC)
  光伏电站的限电离不开光伏有功功率控制系统(简称AGC),2011年5月,国家电网公司发布的《光伏电站接入电网技术规定》指出:&光伏电站应具备有功功率调节能力,能够接收、自动执行调度部门的控制指令,确保有功功率及有功功率变化按照调度部门的要求运行&。因此大型光伏电站均需配备光伏有功功率控制系统,接收调度中心的有功功率控制指令,按照预定的规则和策略实现负荷分配。
  一般情况下,AGC的控制模式可分为计划曲线和定值控制两种。如图1为定值跟踪模式,即当天控制电站的总输出功率为恒定值,该值取决于省调下发值,当晴天辐照较好的情况下,若实时功率输出值超过限定值后将会被&削峰&,那么实时曲线看上去就接近于梯形曲线。
  图1 AGC限功率值跟踪模式(省调限定负荷60MW)
  图2为计划曲线跟踪模式,一般限电时间为某一时段,而且没有规律,如下午14点至16点,使得总有功功率曲线(红色)保持在限定目标曲线(绿色)附近上下浮动,且每个地区最低容忍的浮动幅度会有所不同,如上下浮动不超过0.3MW或0.5MW。
  图2 AGC计划曲线跟踪模式
如今,物联网浪潮已然席卷至汽车电子产业,发动机控制系统、底盘控制系统和车身电子控制系统已模型初显,安全...
ADAS市场或破千亿
国产汽车雷达将爆发
抢占智能汽车制高点
为自动驾驶保驾护航
电动汽车面临的挑战
电池能量管理相关文章
电池能量管理相关下载
光伏电站相关文章
光伏电站相关下载
太阳能光伏相关文章
太阳能光伏相关下载
AGC相关文章
AGC相关下载
MathWorks中国有限公司资深应用工程师陈建平表示:“2015年80%的公司开始认识到大数据对公司未来发展的重要性,38%的公司认为非常重要,而2014年的比例分...
今天华为的成功离不开3大基础软件系统的支撑,一是全球团队项目协作沟通邮件系统LOTUS,二是产品全生命周期管理软件PLM,三是算法开发和大数据处理软...
创新实用技术专题
版权所有 & 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-AGC(Automated Guided Cart)是简易的,一般用于、单一流程的搬运,不需要上位调度系统。在AGC上一般不配自动装/卸载机构,所以不需与其他输送设备联锁。若一定要配置也可以通过硬件方式实现,如对射式光电管。多台AGC可以同时运行在较为简单的环路中,由于没有上位调度系统,AGC之间的交通管理不是通过路径分配实现的,而是完全靠自身的非接触防护装置进行控制,有一定的局限性。根据不同需求,AGC也可以完成不同的工作流程,但流程是事先设定的,不是上位计算机通过任务调度实施计算出来的,所以AGC没有调度策略之说。AGC多采用有线(磁带,电线)导引,其路径搜索也要比简单得多。功能复杂的AGV&&&&&&
自动控制(&Automatic&Generation&Control&)在电力行业中,AGC指:自动发电控制(AGC,&Automatic&Generation&Control&),是并网提供的有偿辅助服务之一,发电机组在规定的出力调整范围内,电力调度交易机构下发的指令,按照一定调节速率实时调整发电出力,以满足电力系统频率和联络线功率控制要求的服务。或者说,自动发电控制(AGC)对电网部分机组出力进行二次调整,以满足控制目标要求;其基本功能为:负荷频率控制(LFC),经济控制(EDC),备用容量监视(RM),AGC性能监视(AGC&PM),联络线偏差控制(TBC)等;以达到其基本的目标:保证发电出力与负荷平衡,保证系统频率为额定值,使净区域联络线潮流与计划相等,最小区域化运行成本。历史已有40多年,并在我国20多个省级电网得到应用.功能简单的AGC&
自动增益控制/AGC
自动增益控制(Automatic&Gain&Control)&&&&&使放大电路的增益自动地随信号强度而调整的自动控制。实现这种功能的电路简称AGC环。AGC环是闭环电子电路,它可以分成增益受控放大电路和控制电压形成电路两部分。增益受控放大电路位于正向放大,其增益随控制电压而改变。控制电压形成电路的基本部件是 AGC 检波器和低通,有时也包含门电路和直流放大器等部件。放大电路的输出信号u0 经检波并经滤波器滤除低频调制分量和噪声后,产生用以控制增益受控放大器的电压uc 。当输入信号ui增大时,u0和uc亦随之增大。uc 增大使放大电路的增益下降,从而使输出信号的变化量显著小于输入信号的量,达到自动增益控制的目的。放大电路增益的控制方法有:①改变晶体管的直流工作状态,以改变晶体管的电流放大系数β。②在放大器各级间插入电控衰减器。③用电控可变电阻作放大器负载等。AGC电路广泛用于各种机 、 录音机和测量仪器中,它常被用来使的输出电平保持在一定范围内 ,因 而也称自动电平控制 ; 用于话音放大器或收音机时,称为自动音量控制。AGC有两种控制方式:一种是利用增加AGC电压的方式来减小增益的方式叫正向AGC,一种是利用减小AGC电压的方式来减小增益的方式叫反向AGC&.正向AGC&控制能力强,所需控制功率大被控放大级工作点变动范围大,放大器两端阻抗变化也大;反向AGC所需控制功率小,控制范围也小。
AGC——Automatic&Gain&Control的缩写。所有摄象机都有一个将来自&CCD的信号放大到可以使用水准的视频放大器,其放大量即增益,等效于有较高的灵敏度,可使其在微光下灵敏,然而在亮光照的环境中放大器将过载,使视频信号畸变。为此,需利用摄象机的自动增益控制(AGC)电路去探测视频信号的电平,适时地开关AGC,从而使摄象机能够在较大的光照范围内工作,此即动态范围,即在低照度时自动增加摄象机的灵敏度,从而图像信号的强度来获得清晰的图像。具有AGC功能的摄像机,在低照度时的度会有所提高,但的噪点也会比较明显。这是由于信号和噪声被同时放大的缘故。
自动发电量控制/AGC
是能量管理系统EMS中的一项功能,它控制着调频机组的出力,以满足不断变化的用户电力需求,并使系统处于经济的运行状态。
在联合电力系统中,AGC是以区域系统为单位,各自对本区内的发电机的出力进行控制。他的任务可以归纳为如下三项:&  
(1)维持系统频率为额定值,在正常稳态运行工况下,其允许偏差在正负(0.05——0.2)HZ之间,视系统容量大小而定。&  
(2)控制本地区与其他区间联络线上的交换功率为协议规定的数值。&  
(3)在满足系统安全性约束条件下,对发电量实行经济调度控制EDC(Economic&Dispatch&Control)。&1.控制方法控制电压形成电路的基本部件是&AGC&检波器和低通平滑器,&有时也包含门电路和直流放大器等部件。&放大电路的输出信号u0&经检波并经滤波器滤除低频调制分量和噪声后,&产生用以控制增益受控放大器的电压uc&。当输入信号ui增大时,u0和uc亦随之增大。
uc&增大使放大电路的增益下降,&从而使输出信号的变化量显著小于输入信号的变化量,达到自动增益控制的&目的。放大电路增益的控制方法有:&①改变晶体管的直流工作状态,以改变晶体管的放大系数β。②&在放大器各级间插入电控衰减器。③用电控可变电阻作放大器负载等。&AGC电路广泛用于各种接收机&、录音机和测量&仪器中,它常被用来使系统的电平保持在一定范围内&,&因&而也称自动电平控制&;&用于话音放大器或收音机&时,称为自动音量控制。
2&.&绝对值AGC控制系统
过程计算机同时向AGC提供目标厚度及预设定辊枫缝,并且应用厚度计原理,使AGC调整辊缝得到目标厚度。
3.&动态型AGC控制系统
其核心是通过实时测量压力增量值来计算下一步的辊缝增量值,然后通过APCAGC控制功能的系统。
&|&相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。
此词条还可添加&
编辑次数:13次
参与编辑人数:6位
最近更新时间: 09:22:53
申请可获得以下专属权利:
贡献光荣榜你现在的位置:
光伏电站限电损失情况如何应对?
&&更新日期:
我国近几年光伏电站的建设速度非常快,但配套建设还是无法跟上,加上西部地区消纳光伏电能的能力有限,如甘肃、新疆、青海等地,很多光伏电站遭遇了限电问题的困局,带来了巨大的能源浪费,部分月份限电比例达到90%,光伏电站的投资收益率大打折扣,而且对光伏未来的发展也是非常不利的,必须加强配套电网送出线路的建设,将光伏电力外送到消纳能力较强的地区,或者改善火电、光伏、风电等能源利益竞争所产生的矛盾,进一步调整能源结构,优先使用光伏电力。
随着国家生态环境和气候变化形势的日益严峻,以优先发展可再生能源为特征的能源革命已经成为必然趋势。本文以甘肃某电站的限电情况为例,简要介绍限电带来的发电量损失计算方法及技术对策。
1.有功功率控制系统(AGC)
光伏电站的限电离不开光伏有功功率控制系统(简称AGC),2011年5月,国家电网公司发布的《光伏电站接入电网技术规定》指出:“光伏电站应具备有功功率调节能力,能够接收、自动执行调度部门的控制指令,确保有功功率及有功功率变化按照调度部门的要求运行”。因此大型光伏电站均需配备光伏有功功率控制系统,接收调度中心的有功功率控制指令,按照预定的规则和策略实现负荷分配。
一般情况下,AGC的控制模式可分为计划曲线和定值控制两种。如图1为定值跟踪模式,即当天控制电站的总输出功率为恒定值,该值取决于省调下发值,当晴天辐照较好的情况下,若实时功率输出值超过限定值后将会被“削峰”,那么实时曲线看上去就接近于梯形曲线。
图1 AGC限功率值跟踪模式(省调限定负荷60MW)
图2为计划曲线跟踪模式,一般限电时间为某一时段,而且没有规律,如下午14点至16点,使得总有功功率曲线(红色)保持在限定目标曲线(绿色)附近上下浮动,且每个地区最低容忍的浮动幅度会有所不同,如上下浮动不超过0.3MW或0.5MW。
图2 AGC计划曲线跟踪模式
2.限电损失量估算
由于限电比例不同,所造成的发电损失也会不同,现以甘肃某100MW集中式电站为例进行分析,电站由200台500kWp集中式逆变器组成,日省调下发限电指令,限定功率值为60MW,实际地调下发限定值为50MW,如果逆变器和AGC的通讯正常,响应及时并且受AGC 的控制(AGC的参数设置界面逆变器的软压板应该投入,如果通讯不正常,将无法接受AGC的控制),并且限有功功率分配较为均匀的情况下,每台逆变器的实时输出功率将被设置在250kW以下,图3为某标杆逆变器的实时功率输出曲线,逆变器的输出功率取决于当前时刻下的太阳辐照度和环境温度,在上午九点二十分左右达到250kW,直到下午四点五十分左右输出小于250kW,而在中间时段如果存在限电,那么将造成一定的发电损失。
图3 500kW逆变器交流功率输出曲线
当天逆变器交流侧满负荷下实际发电量为3399kWh(有效发电小时数为6.8h),如果限电,将一天的时间分成三个时段,参考表1。中间时段如果不限电发电量则为2916.44kWh,其他时间段共483kWh(上午特定时段243kWh,下午时段240kWh)。如果限电,中间时段约在 1895kWh左右(约7.58小时),那么由于限电带来的损失部分为1021.44kWh,占发电量的30%左右。
表1甘肃某电站500kW逆变器分时发电量()
若电站限功率值达到40%,同样也可计算,如表2所示,限电比例增加,限电损失也相应增加。
表2甘肃某电站500kW逆变器分时发电量()
对于整个电站(逆变器侧)的限电损失,计算可参考标杆逆变器的方法。整个电站的逆变器发电性能一般会有一定的差异,因此所有逆变器的当天发电量有一定的离散率,如500kW逆变器一天发电量可达3500kWh以上,差的可能只有2800kWh左右,需要分析哪一方面出了问题,如逆变器本身性能、组串故障、组串通讯异常、接地故障、组件失配及热斑影响等。通过对各个逆变器的发电量进行持续比较,选择发电性能较为稳定和故障率特别少的逆变器为标杆逆变器,并计算其他逆变器与标杆逆变器的发电差异。
那么对于整个电站限电损失量(逆变器交流侧)的估算可参考下面步骤:
①采集标杆逆变器的当天发电量E0(一般可从监控系统的后台读取),逆变器对应方阵的实际装机容量(对于运行多年的电站,建议重新对光伏方阵区进行装机容量测试),然后计算标杆逆变器的每千瓦的发电量E0/P0(单位:kWh/kW)。
②逆变器1#装机容量P1,当天发电量E1,限电损失量=(E0/P0)*P1*K1-E1(K1为标杆逆变器与1#逆变器发电差异系数,根据各逆变器实际发电量的统计分析,该系数为2%至10%不等)。通过此方法估算其他逆变器的限电损失量,累加可得整个电站当天的限电损失量。
③需要注意的是由于通讯异常、方阵发电异常、逆变器停机等带来的损失不属于限电损失,需要计算故障损失发电量,并从限电损失量中减去该值。
上述计算方法得当的限电损失量为估算值,如果没有标杆逆变器,可通过实际辐照度、环境温度和实际系统效率来估算电站的理论应发电量,并减去当天的实际发电量可粗略作为限电损失。
3.限电技术对策
目前针对上述限电问题,在技术层面可在原有并网电站引入储能环节,以储能补偿实际光伏输出功率与限定有功功率的差额,降低限电损失量,储能系统根据耦合方式的不同,分为直流侧耦合和交流侧耦合,如家庭户用小型储能系统光伏在直流侧耦合,而对于大型地面电站,一般以交流侧耦合为主。下文简要介绍交流侧耦合的充放电判断依据和容量配置估算。
参考下图4左,横线阴影部分表示能量输入储能装置,对其进行充电,能量来源于光伏电力。竖线阴影部分表示能量从储能装置输出,进行功率补偿,如此以来,光伏逆变器输出到电网的功率曲线为平滑直线,当然这个是最理想的情况,实际上很难达到平滑状态。图4左中红色直线为省调(地调)下发的功率限电值(如上述100MW电站,200台逆变器,限定值50MW,AGC分配均匀,那么每台逆变器当天最大交流输出不能超过250kW),蓝色虚线假设为光伏逆变器的实际输出功率。
在电池能量管理系统中可设置目标值P1,P1=总限电功率值/逆变器台数(单位:kW),系统可与逆变器进行实时通讯,并实时监测光伏逆变器的交流功率输出P2(单位:kW),当P2和P1满足下列关系时,实现充放电。
基本原则:当P2>P1时,充电,当P2<P1时,放电。对于该判定依据,遇到晴天,光伏曲线一般较为规则,容易实现;而如果遇到多云天气,光伏出力容易波动,会使得电池反复充放电,影响寿命,可通过相关策略来细化控制。需要注意的是储能系统和逆变器的通讯响应时间尽量要短,因为光伏的出力时刻都在变化,如果储能系统响应时间长,接收到的P2值为下一时刻值,那么补偿的容量可能比应补偿的量要小。
电池容量配置的计算,对于上述甘肃某电站500kW逆变器,可假定理想情况下如晴天天气,储能电池在满足上述条件时实现充电,该时段有6-7个小时左右,如果多云天气可能无法充满,但遇到阴雨天气就无法进行充电(图4右),实际放电多少以所充容量为准,特别是连续阴雨天时,会无法充电和放电,只能等到晴天天气再充电。
图4 光伏储能方案原理
对于上述甘肃电站实例,光伏发电在时间段7:30-9:15和16:55-19:10共计约4h左右,实际光伏发电483kWh,增加储能系统后,电池放电容量可计算得:558.65/0.97=575kWh(假设储能逆变器转换效率97%),占当天发电量的24%,但仍剩有461kWh未补偿。对于一台500kW逆变器,储能电池容量可配备500kW*2h储能单元,但还需要考虑到电池放电深度和逐年衰减率。
上述考虑的情况是基于AGC均匀分配的情况下,但事实上AGC不可能均匀分配,假设A逆变器限定有功250kW,B逆变器限定有功200kW,如果按照功率大于250kW充电策略,红绿线与功率曲线包围的面积这部分电力无法被电池储存,遇到逆变器限定功率分配不均的情况,可选取合适值,使得整个电站的功率补偿最大化,参考图5。
从电池容量配置角度,需要考虑限电比例和限电损失部分,当限电40%,按照50%限电容量配置,如果遇到连续的晴天天气,会造充电容量过多而浪费,同样参考图5,当目标直线越往下,A和B区域所包围的面积就越小,电池需要放电的能量也就相应减少。因此需要统计一年内的限电比例,阴雨天天数,选择合适的容量配置,使得投入和产出达到最佳经济效益。
储能系统作为限电的解决方案之一,目前已经有非常成熟的技术,如比亚迪和阳光电源等厂家,其投资收益的计算需要考虑一年当中的晴天、阴雨天的天数,限电损失量,可补偿量,电池衰减等因素来综合确定。
本文简要介绍了在当前限电大环境下的光伏发电量的限电损失计算,并引出储能技术对策,文中所述储能方案和常规的“削峰填谷”应用有所不同,关于容量配置和储能系统的相关建议如下:
1.首先需要考虑当前电站的AGC分配策略,遇到逆变器限定功率分配不均的情况下,选取合适值,使得电站整体的功率补偿最大化。
2.储能电池容量的配置需要考虑AGC的分配策略、电站一年的限电损失和比例、可补偿容量等。
3.对于交流耦合模式,储能系统需要实时监测逆变器交流侧的输出功率,并且响应及时,功率补偿及时。
4.电池能量管理系统需要考虑天气因素,防止在目标值附近频繁充放电,影响电池寿命。
5.各个电站有功功率控制模式会不尽相同,一般储能方案较适合于定值跟踪模式。对于曲线跟踪模式,目标值实时在变化,还需要和AGC进行通讯,会比较复杂。&
&&我要评论
免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
该新闻目前暂无评论,快来抢第一个沙发吧!
版权所有 中国电器工业协会
北京市丰台区南四环西路188号12区30号楼 邮编:100070光伏系统中最大功率点跟踪的研究
您好,欢迎来到机电之家网! [
国家企业信息化
电子商务示范平台
当前位置: && &&
光伏系统中最大功率点跟踪的研究
添加:不详
1 引言   随着科学技术的快速发展和人们生活水平的不断提高,人们对能源的需求量越来越多,而传统的化石能源日益枯竭,同时化石能源的过度开采严重破坏了生态环境,化石能源的利用严重污染着生活环境。能源短缺、环境污染是当今世界面临的两大问题,制约着人类经济和社会的发展。因此,开发利用清洁的可再生能源是全世界各国共同追求的目标。太阳能因其发电清洁环保,无噪声,取之不竭、用之不尽等特点受到世界各国的青睐。但目前,太阳能光伏发电系统仍存在部分问题,如光伏电池的转换效率低且其实际输出功率随日照强度、环境温度、阴、晴雨、雾等气象条件的变化而变化。因此,如何进一步提高光伏电池的转换效率,如何充分利用光伏电池所转换的能量,成为光伏系统研究的热点。那么将现有转换效率的光伏电池应用到光伏发电系统中,控制光伏电池瞬时的输出功率,使其在任何日照条件下都能工作在最大功率点,实现最大功率点的跟踪就变得尤为重要。2 光伏电池组件的特性  光伏电池是利用硅等半导体的光伏效应通过pn结直接把太阳能转化为电能。在光伏发电系统中,单个光伏电池的输出功率太小,故常常将若干个光伏电池串联或并联后封装在一起,构成光伏电池组件。按照光伏系统所需功率及电压的大小,可以用多个组件按串、并联规则组合在一起,构成光伏阵列。 光伏电池组件的伏安特性曲线如图1所示。从伏安特性曲线可以看出,光伏电池的输出电流在大部分工作电压范围内近似恒定,在接近开路电压时,电流下降率很大。图1所示的参数在标准状态(光伏电池组件表面温度25℃,光谱分布am1.5,辐射照度1000w/m2)下的含义如下:  开路电压(uoc):正负极间为开路状态时的电压;  短路电流(isc):正负极间为短路状态时的工作电流;  最大输出工作电压(um):输出功率最大时的工作电压;  最大输出工作电流(im):输出功率最大时的工作电流;  最大输出功率(pm):最大输出工作电压(um)×最大输出工作电流(im)。  光伏电池组件的伏安特性强烈的随日照强度和较强烈的随电池温度的变化而变化。图2a)和图2b)分别是光伏阵列在日照1000w/m2时,不同温度下输出的伏安特性和伏瓦特性。由图2a)和图2b)可知,温度对光伏阵列的输出电流影响不大,短路电流随温度升高而略有增加,但对光伏阵列的开路电压影响较大,开路电压随温度升高近似线性地降低,因而对最大功率影响明显,见图2b)各实线的波峰幅值变化。图2c)和图2d)分别是光伏阵列在温度为25℃时,不同日照下表现出的伏安特性和伏瓦特性。图2c)和图2d)可知,光伏阵列的输出短路电流和最大功率点电流随日照强度的上升而增大,但日照的变化对光伏阵列的输出开路电压影响不大,其最大功率点的变化也不大,如图2d)虚线与各实线的交点所示。 由图2可知,光伏阵列的输出功率会随着日照强度和电池表面温度的改变而变化。这种变化使光伏电池的工作点一直向最大功率点跟踪变化,控制光伏电池产生最大功率,这种控制称为最大功率点跟踪(mppt:maximum power point tracking)控制。  由光伏电池输出特性分析知道,温度主要影响光伏电池的输出电压,而光照度主要影响其输出电流。3 光伏阵列最大功率点跟踪的原理  由于光伏阵列的伏瓦特性随着日照和温度改变而变化,因此要准确描绘某一条件下的光伏阵列的功率特性曲线,并将其用于mppt控制是很困难的。但不管光伏阵列的伏瓦特性曲线如何随外在因素变化,都具有如图3所示的大致形状。光伏阵列伏瓦特性的特征如下:  (1)对应光伏阵列电压,光伏阵列输出功率的极值是唯一的,且该极值也是最大值;  (2)在功率最大点两侧,伏瓦曲线是单调递增或单调递减的。  3.2 最大功率点跟踪控制必须达到的控制目标  光伏发电系统的最大功率点跟踪控制必须达到以下控制目标:  (1)不需要事先确定精确的光伏电池伏瓦曲线;  (2)mppt控制算法适用于任何不同配置的光伏阵列;  (3)对于随机变化的天气,mppt控制要保证系统的稳定性;  (4)日发电量最大。4 光伏阵列最大功率点跟踪的方法——扰动观察法  最大功率点跟踪方法实质上是自寻优过程,主要包括固定电压法、扰动观察法、电导增量法 、间歇扫描法和智能控制法等,下面介绍扰动观察法。  对于光伏发电系统的发电功能而言,能量的传递方向是由光伏阵列送给电网的,图4示出了光伏发电系统直流测的电流关系。其中,udc(n)—当前采样电压值,isp(n)—当前采样电流值,|△udc|—扰动电压步长,s—扰动方向,udc(n-1)—前一次电压值,p(n)—当前太阳电池功率计算值,p(n-1)—前一次计算的太阳电池功率值,△p—两次功率之差。 扰动观察法的工作原理就是借以周期性的改变负载大小来改变光伏电池的输出电压及功率,也就是改变光伏阵列的工作点,它通过观察比较和变动前后两次的输出功率和输出电压的大小来决定下个周期负载的变动是增加还是减少。该方法的具体操作是给输出电压一个扰动值,其方向可正(s=1),可负(s=-1),然后根据测出的电压电流值计算出太阳电池的输出功率p(n),然后将其与上一个测量值p(n-1)进行比较。若输出功率增大,说明扰动所加的方向有利于输出功率的提高,此后继续向这个方向施加扰动并继续观察,若施加的扰动使光伏阵列的输出功率减小,说明扰动的方向错误,则在下一次的扰动中使方向相反,如此不停的观察调整,以使光伏电池工作在最大功率点附近。扰动观察法的算法流程图如图5所示。  扰动观察法的实现原理较为简单,容易实现,并且不用考虑温度或光照强度的变化,独立于系统使用环境,因此适应性较强。但是频繁的功率扰动使得系统多数时间只能工作在最大功率点附近,即使系统偶尔恰好工作在最大功率点,算法也会强制系统离开,所以扰动观察法的最大功率点跟踪效率并不是很高。而且采用这种控制策略的光伏系统的最大跟踪效率和跟踪速度取决于跟踪步长的大小。此外,这种控制方法也可能在光强变化的情况下或多电池板串并联时会产生最大功率点“误判”的情况,可能使最大功率点跟踪的扰动方向在一段时期内始终朝着一个方向,导致系统无法正常工作,或是最大功率点跟踪停留在多峰曲线的“假”最大功率点上。5 基于变换器输出电流控制的最大功率点跟踪的算法  由第4节的扰动观测法可知,为了判断施加扰动量后光伏电池输出功率的变化情况,需要对光伏电池输出电压和输出电流进行采样并计算功率,以便根据功率变化情况决定施加扰动量的方向,以此进行最大功率点跟踪。与其它最大功率点跟踪法相比,扰动观测法具有算法简单、实现方便,受环境因素影响小等优点。但是扰动观测法需要对光伏电池输出电压和输出电流进行检测,而一般变换器(并网型逆变器或独立运行充电控制器)只在输出端装电流传感器,用其进行电流控制,这就需要额外的两个传感器,从而增加系统成本,另外,扰动观测法需要对采样结果进行功率计算(乘法运算),也增加了单片机的运算量。如果能够根据变换器输出电流作为判断依据进行最大功率点跟踪,则不仅可以省去两个传感器,而且无需乘法运算,在继承扰动观测法算法简单、受环境因素影响小等优点的基础上,进一步降低系统成本,减轻单片机运算负担。变换器输出电流控制最大功率点跟踪法正是基于这点提出的。为了简化其工作原理的分析,先做两个假设:变换器自身功率损耗为零,即光伏电池输出功率等于变换器输出功率;负载两端电压(蓄电池电压或电网电压)恒定不变。  式(4)为变换器输出电流控制最大功率点跟踪判断依据。变换器输出电流控制最大功率点跟踪调节过程类似于扰动观察法调节过程。变换器输出电流控制最大功率点跟踪算法流程图如图6所示。变换器输出电流控制最大功率点跟踪仅需一个电流传感器,根据负载电流大小直接进行扰动方向判断,不再需要对光伏电池输出电压和输出电流进行检测及功率计算,简化算法,降低成本。6 结束语  基于变换器输出电流控制的最大功率点跟踪法是在扰动观测法的基础上,仅以变换器输出电流作为判断依据进行最大功率点跟踪,不仅可以省去两个传感器,而且无需乘法运算,在继承扰动观测法优点的基础上,进一步降低系统成本,减轻单片机运算负担。基于变换器输出电流控制最大功率点跟踪法通过周期性检测并计算变换器输出电流的有效值,实时调节扰动方向,使得变换器输出电流有效值始终维持最大可输出电流,从而实现光伏阵列的最大功率输出。该方法控制简单,响应速度快,对传感器精度要求不高,在天气条件变化较快的场合也能达到很好的跟踪效果。本研究在光伏发电系统的开发和应用中具有重要的科学研究意义和现实意义。
作者:未知 点击:2309次
本文标签:光伏系统中最大功率点跟踪的研究
* 由于无法获得联系方式等原因,本网使用的文字及图片的作品报酬未能及时支付,在此深表歉意,请《光伏系统中最大功率点跟踪的研究》相关权利人与机电之家网取得联系。
关于“光伏系统中最大功率点跟踪的研究”的更多资讯
:湖北东威专用汽车公司
&【求购】 &&&
&【求购】 &&&
&【求购】 &&&
&【求购】 &&&
&【求购】 &&&
&【求购】 &&&
&【求购】 &&&
&【求购】 &&&
VIP公司推荐

我要回帖

更多关于 光伏功率预测系统 的文章

 

随机推荐