两块容量一样36v锂电池充电器可以同时接入控制器吗,就是充电分开,放电时正极接正极负极接负极

3802被浏览285705分享邀请回答/document/battery.pdf?m=0.3*Ah.用人话说,把电池容量(安时)乘以30%就能算出电池中的锂含量(克)对于赫赫有名的18650(手机笔记本特斯拉)电池来说,其重量在42g左右,标称容量在2200mAh左右,于是其锂含量为.3=0.66g大概是总重量的1.5%。原来如此啊!如此以来我们只要提升电池中的锂含量就能提高能量密度了!!真要这么简单就好了。我们先来看看锂电池除了锂还有啥。别走啊!!图看不懂可以听我归纳嘛。一般而言电池的四个部件非常关键:正极(放电为阴极),负极(放电为阳极),电解质,膈膜。正负极是发生化学反应的地方,重要地位可以理解。但是电解质有啥么用处??不做功还很占重量。接着看图。回来回来,看不懂图就听我讲,没点耐性上啥么知乎?直接去天涯网易好了。上图非常好地显示了电池充放电时的过程。这里先只说放电:电池内部,金属锂在负极失去电子被氧化,成为锂离子,通过电解质向正极转移;正极材料得到电子被还原,被正极过来的锂离子中和。电解质的理想作用,是运送且仅运送锂离子。电池外部,电子从负极通过外界电路转移到正极,中间进行做功。理想情况下,电解质应该是好的锂离子的载体,但绝不能是好的电子载体。因此在没有外界电路时,电子无法在电池内部从负极转移到正极;只有存在外界电路时,电子转移才能进行。真晕,你不是说“能量载体们涉及到的具体化学过程千变万化,但总能归纳到一个氧化还原反应” “氧化还原反应的实质是电子从还原剂到氧化剂的转移”,汽油车没有电解质吧?但是汽油燃烧也有电子转移吧,咋么就不能发电呢?是的,燃烧必然涉及电子转移,那么燃烧的电子转移与电池的电子转移根本区别在哪里??是否有序。燃烧的电子转移在微观范畴上完全无序也不可控。我们完全没法预测燃料与氧气分子会往哪个方向运动,下一时刻的速率如何,我们也不知道燃料上的电子会向那个方向转移到哪个氧气分子上。10^20-23次方的分子的随机运动与更多的电子的随机转移导致的结果是无序的能量释放,或者简单点说,放热。电池相比而言就好办点。尽管我们依旧不知道电池里面的每一个分子的运动轨迹,但我们至少可以知道:金属锂只会在负极材料表面失去电子成为锂离子;锂离子会从负极出发,最终到达正极。电子只会从负极材料表面出发,向着高电势的正极运动。10^20-23次方的电子的协同运动,在宏观上我们称之为,电流。总结一下吧。为了放电,为了有序的电子转移,电池们不得不携带没有能量但是必不可少的电解质以及各种辅助材料,于是进一步降低了自身的能量密度。这就完了么?没有。老实说这一部分只是个铺垫,让有兴趣有耐心的人练练级,最终boss还没出现呢。----------------------------------------------------第二部分结束 4.26----------------------------------------三:电池的大问题之二,负极表面材料大家好,我又回来了。如果你能坚持每行读下来一直读到这里,恭喜,你对电池的理解已经上了一个层次。现在回顾上一部分的内容。啥么??全忘了??不就一句话么?由于不做功但是必不可少的电解质以及其他辅助材料的存在,电池的能量密度被稀释了。这些额外重量到底有多少??电解质的重量一般占电池全重15%(链接找不到了)隔膜没查到。估计把外壳,外接电极之类的辅助材料都算上,总重应该不超过电池总重的50%。不对啊,电池虽然掺‘水’了,但也不至于水得如此啊。市面上的锂离子电池们的能量密度也就单质锂的1%左右。这到底又发生了什么?(这句式为何这么熟悉呢?)喝点鲜橙多,让我们看看最常见的钴酸锂电池(Tesla
Roadster)的电化学反应式。醒醒啊!!化学不好没关系,不要晕倒啊!!都读到这里了,你也知道达主会归纳的呀!!发生电子转移的其实只是一部分锂与钴,其它的元素均不参与电子转移。然后我们做个小计算:单质锂的原子量为6.9,能贡献1个电子参与电子转移。氧化剂来自空气,不需要考虑。然后我们做个小计算:单质锂的原子量为6.9,能贡献1个电子参与电子转移。氧化剂来自空气,不需要考虑。钴酸锂电池的电池反应的反应物总分子量为98+72=170,但只能贡献半个电子参与电子转移。因为只有部分锂原子会发生反应。假如我们认为这两个电子的做功是一致的,那么就可以估计一下这两种能量载体的能量密度之比了。电池能量密度:燃料能量密度=(0.5 /170)
/(1/6.9) =2.03%
电池完败。考虑到电池有一半重量是辅助材料,我刚才没算进去。于是还得打个折。就剩下1%了。所以能量密度就成了这样:锂
43.1MJ/Kg 锂离子电池0.36~0.875MJ/Kg呵呵呵呵呵呵呵……还跟得上么??四则运算多简单呀。现在知道发生了什么了吧??现在你们是否明白 我为啥说:电池背后的化学限制了电池的能量密度。接下来我们的问题是:为什么电池的化学反应要那么复杂,直接降低了电池的能量密度。这个问题展开说会比较复杂,估计大部分人没耐心看完。所以先给个简单答案:为了有序。好了,没耐心的人,你们可以走了。下面真的很长,能读完的都不是一般人。开始长篇之前再放张图:剩下的同学们,是不是觉得这图很熟悉?其实还是锂电池的示意图,只是这回因阴极阳极的表面结构都显示出来了。大家有没有觉得它们都很整齐规矩啊??整齐规矩换个说法,有序。为什么正极负极的表面结构都需要有序?因为要保证在充电/放电时,氧化还原反应只在正极和负极的表面发生,这样才能有电流。我们先看石墨(C6)所在的负极。负极的任务很简单,放电时保证锂原子(不是离子)都在负极表面失去电子,充电时再把它们抓回来就好了。由于充电时阳极电压低,带正电的锂离子会自发向负极移动,得到电子回归为锂原子。似乎没有石墨什么事情啊??如果是一次性电池,确实不需要石墨。但如果是可充放电池,阳极表面材料不是石墨也会是其它物质。别卖关子了,快说到底咋回事??急啥。这得仔细想想。充电时,锂离子会在负极表面得到电子成为锂原子。然后呢??我们都知道 所有金属都是良好电子导体,锂是金属,所以锂是良好电子导体。于是先到负极的锂原子成为了负极的一部分,于是后到负极的锂离子加入了前锂的行列。。。。于是完全由锂原子构成的晶体出现了。这个过程,又称析晶。结果是锂晶体会刺穿隔膜到达正极,于是电池短路报废了。对于析晶这一现象,我们可以这么理解。在充电过程中,我们对于锂离子的控制实际上很弱。我们只能保证锂离子会移动到负极表面,但我们无法保证锂离子会均匀地分布在负极表面。因此在没有外来约束条件下,充电时锂晶体会在负极表面无序生长,形成枝晶 (dendritic crystal)。所以一定要有个约束条件。要挖个坑让锂离子往里面跳。这个坑的具体表现即为负极表面的石墨材料。如上图所示,石墨层之间的空隙够大,足以容纳单个锂原子,但也只能容纳单个锂原子;然后石墨层与锂原子之间的物理吸附作用可以稳住锂原子,于是锂原子在没有外来电压时候也能安心待在负极表面。如此以来,锂原子便不会野蛮生长了。但能量密度也上不去了。----------------------------------------------------------第三部分结束 4.30--------------------------------------------------四:电池的大问题之三,正极表面材料今天白天知乎特别的安静,基本没啥新提醒。于是我明白,我得赶紧写完了。再不写完,也就真没人看了。上一部分归纳总结一下,为了让锂原子在每次充电时能够均匀有序地分布在负极表面,负极表面需要一层固化的结构来约束(有序化,降低熵值)锂原子的分布。这个设计在很大程度上稀释了电池的能量密度。正极实际上也有同样的问题,为了让锂离子在每次放电时能够均匀有序地分布在正极表面,正极表面需要一层固化的结构来约束(有序化,降低熵值)锂离子的分布。这个设计在很大程度上稀释了电池的能量密度。但还不止。我相信,能看到这里的人,一定有非凡的耐心,你们一定能明白这张图的含义。我相信,能看到这里的人,一定有非凡的耐心,你们一定能明白这张图的含义。这是电池正极材料充放电时结构变化的示意图。这里的M代表金属原子,X代表氧原子。这张图的各种原子的大小比例不要当真。锂离子要比另外两个都小很多。我们可以看到,MX2们在正极基底上形成了几层很规整(很有序)的结构,放电时,电子在正极(正极)聚集,锂离子向正极移动,穿插进入MX2结构的空隙,从而有序的分布在正极表面。MX2中的金属离子得到电子被还原,从而起到氧化剂的作用。然而这张图实际上包含了另一个大问题。大家有没有觉得两边的结构图看上去特别的豆腐渣??就像下面这样??如果你玩过层层叠这种类型的游戏,估计会知道,总有那么几块积木,看上去无关紧要,但只要一动。。。。就成下面这样子了。如果你玩过层层叠这种类型的游戏,估计会知道,总有那么几块积木,看上去无关紧要,但只要一动。。。。就成下面这样子了。这个结构一旦坍塌,不可能自己回复的。这个结构一旦坍塌,不可能自己回复的。怎么办?适可而止,见好就收。套在电池正极这方面来说的话,那就是正极表面必须保持一定量的锂离子来维持结构的完整。这个一定量,一般是50%。这是为啥前面那个反应式会有一个 未知量 x。 即使是在充满电的状态下,还有近一半的锂离子停留在正极表面。于是能量密度更低了。题外话:这也是为啥锂电池很怕过度充电,一旦过度充电,阴极的锂离子跑光了,这堆积木就要塌方了。。。五:电池的大问题之四,材料选择上的捉襟见肘,以及其它我假设看到这里的人完全理解了可充放电池设计上的种种限制。为了有序的电子转移,为了有序的锂离子与锂原子的分布,电池需要电解质以及各种辅助材料,需要在阴极阳极表面有规整的结构,而这些都是以能量密度为代价的。现在回到我开头的论点:1)电池技术太弱了: 这些设计多么巧妙,明明是人类智慧之大成。2)电池技术大有可为:对于未来的展望,我们必须有一个现实的态度。电池技术已经发展了百余年,早就过了爆发期;支持电池技术发展的理论科学为物理与化学,它们的理论大发展大突破都是在二战前就已经结束了。可预见未来的电池技术,必然是基于现在的电池的发展。在民用领域,电池的能量密度是让人最为头疼的问题之一,但又是最难解决的问题.过去的电池能量密度之所以能不断提高,是因为科学家一直在找原子量更小的元素来充当氧化剂,还原剂,以及支持结构。于是我们见证了从铅酸到镍镉,从镍镉到镍氢,从镍氢到现在的锂离子的可充放电池发展历程,但以后呢?还原剂方面:我在开头就说过了。电子转移比例高的元素就那么几个:氢,碳,硼,铍,锂。其中适合作为可充电电池还原剂的只有锂。氢,碳 只在燃料电池中出现。硼,铍至今都不是主要的研究方向,我也不知道这是为什么。氧化剂方面:如果不用过渡金属,那么选择就是第二行第三行的主族元素。卤素显然不行,那么就剩下氧与硫。现实是 锂空气电池(锂
氧)与锂硫电池都有很多人研究,但进展都不乐观。为啥?因为电池的表面结构才是大问题。现在纳米技术不是进展很大么?以后科学家们肯定能用各种纳米线纳米管纳米球纳米碗石墨烯设计出精细有序的表面结构的。那些实验室们隔三差五的都会放出几个大新闻啊。这倒也没错,只是很可能会碰上隐藏boss。啥??都到这里了你搬出来什么隐藏boss??搞笑啊!!!老子不看了!!!不看就不看,反正我也不会告诉你隐藏boss是啥么的。这个超出我专业范畴了。不过有两个问题,如果还有人,不妨想一下。1)石墨一直是锂电池负极材料的不二选择,事实上如果只考虑能量密度的话,金属锡更适合作为负极材料。但到现在为止也就sony 推出过 锡电极的电池 (Sony nexelion 14430W1) 为什么会这样?2) 除了钴酸锂之外,目前的其它锂电池正极热点材料 还有三元化合物Li(NiCoMn)O2 磷酸铁锂 (LiFePO4) 然而由于压实密度原因,采用这些材料的电池的容量并不如钴酸锂电池。为什么人们还要大力研究??最后,燃料电池实在没空写了,有人有兴趣不如再问个问题吧。4.8K486 条评论分享收藏感谢收起707 条评论分享收藏感谢收起查看更多回答 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
锂动力电池_免费下载
下载积分:1000
内容提示:锂动力电池_免费下载
文档格式:DOC|
浏览次数:1|
上传日期: 14:58:25|
文档星级:
全文阅读已结束,如果下载本文需要使用
 1000 积分
下载此文档
该用户还上传了这些文档
锂动力电池_免费下载
关注微信公众号捷配欢迎您!
微信扫一扫关注我们
当前位置:&>>&&>>&&>>&锂电池用于改装电动车须谨慎
  电动车对其电池的性能要求非常高,电动车工作时处于长时间大电流放电状态,用锂电池改装电动车,应特别小心。一般应掌握以下原则:
  1、锂电池种类的选择
  最好选用聚合物锂电池,不轻易选择锂粒子电池。因为锂粒子电池一旦过充、过放或超温限使用时,容易发生爆炸、燃烧、碎片飞溅伤人,且三者在瞬间同时发生,使人难以防范。而聚合物锂电池发生过充、过放或超温限使用时,-般呈外壳铝塑膜鼓起:电池内极板与塑膜隔板分离,由于电池内无电解液,电池内阻迅速增大,容量丧失,电池自动失效,事故自行终止,因而不易发生爆炸。
  2、容量
  尽量选择大容量锂电池。例如原采用电池容量10Ah,选择锂电池时,最好选用5Ah/块的锂电池两块并联使用。组装后的锂电池容量不得小于原车电池容量。
  3、新旧
  尽量选择全新的、同一个一个厂生产的同型号、同批次的锂电池,这些新电池一致性好,使用安全、寿命长。
  4、保护电路
  用锂电池改装电动车,应采用单体电池保护与电池组总体保护相结合的多重保护电路。
  (1)单体电池保护
  每个单体电池都应装有各自的保护板,然后再并、串联成适合于电动车电压、容量的电池组。每块保护板应至少有下述功能:
  1)过电流保护:当电流达1.5C时自动断电。其中C为电池容量。
  2)过充保护:当充电电压达4.2V时,自动断电。
  3)过放保护:当放电电压达时,自动停止放电。
  (2)总体保护
  用单体锂电池组装好的锂电池组,还需加装总体保护电路,包括过流、过充、过放、超温等多重保护。以一组36V/10A的锂电池组加装总体保护电路的方法为例加以说明。
  1)电流保护
  图1为笔者制作的过流保护装置。E为36V/10Ah锂电池组;BX为10A保险;J为继电器(用型号:YE-KDC-A04-8型彩电开关代替);G为,在干簧管外绕有4匝L;R为限流;C为贮能;D为二极管;TK为一,动作温度45℃;M为电动车马达。
  当合上JK时,M正常运转,E通过D向C充电,电动车正常行驶。当某种原使I≥14A时,L发出的场使G内闭合,C内贮存的电能通过J绕组的内阻r、电阻R放电,J吸合,使JK释放,切断电路,E停止向M供电。从而保证E不被大电流烧毁。其中,保护器动作电流I与取样线圈L匝数N之间的关系如附表所示。
  该保护装置有以下优点:1,取样电路线圈L为一段长11cm的Φ1.2mm漆包线,耗能趋近于0;2,保护动作灵敏、干脆利落。
  2)过电压保护
  36V锂电池组充电时,当电压充达42V时,必须有自动切断充电电源功能。图2所示电路能满足此要求。在随车(二阶段)充电器SP-70A的正极输出端串接三只二极管Dl、D2、D3(lN5408×3),对36V锂电池组E充电,刚开始(第一阶段)充电时,A点电压为44.4V,Dl~D3上压降为2.6V,并以1.5A恒定电流对E充电。随着时间推移,E的电压不断升高(如图2a所示),当电压升高达41.8V时,SP-70A转人第二阶段充电,A点输出电压突变为+41.7V,比B点低0.1V,Dl~D3均处于反向偏置,充电电流自动被阻断,充电结束(如图2b所示)。这样,即能保证在任何情况下锂电池都不会过充。
  3)过放保护
  单体锂电池的额定放电终止电压为3.0V,用于电动车,应将放电终止电压提高到3.15V。36V的锂电池组,放电终止电压设定为31.5V有如下好处:1.和原车用铅电池放电终止电压31.5v兼容,使原车控制器同时适用于铅锂两种电池,降低了成本,提高了可靠性;2锂电放电深度变浅,对其寿命有利。
  因此,决定用原控制器内的31.5V过放保护器作为锂电池组的过放保护器。当锂电池组放电至31.5V时,保护器动作(绿色欠压灯亮),自动切断对电动车马达M供电。从而保护锂电池组不会因过放而损坏。
  笔者有一组36V/10Ah的锂电池组,用随车控制器的过放保护电路对锂电池组进行过放保护:当电压放电至31.5V时,自动断电,停止工作。使用一年半无任何问题。
  最近做了一个全放电实验,将已经骑行多时,放电至31.5V的锂电池组从车上拆下,继续放电至30.0V再充电,结果,充电终止电压仅能达到37.6V,而不是原来的41.8V。
  将锂电池组拆开检查,10个小锂电池组中有9个小锂电池组电压为41.8V;而另1个小锂电池为-0.5V,铝塑膜鼓起,已严重损坏,损失80元。损坏原因:当锂电池组放电至31.5V时,该小组锂电池电压已达放电终止电压,再继续放电时,电压放至0V,仍再继续放电后,出现电流倒灌、极性反转而彻底损坏。实践证明:将放电终止电压提高到31.5V是保护锂电池组不致因过放而损坏的行之有效方法。
  4)超温保护
  锂电池使用不当时,内部温度升高、内部压强增大,当压强增大到外壳无法承受时,则发生爆炸。因而在锂电池组内部设置温度保护电路,可使锂电池发生爆炸的几率大大降低。
  方法:在锂电池组中央位置埋设一枚45℃(10A)的温度开关,并将TK串联接于锂电池电路中,如图1所示。TK为常闭触头式,在使用过程中,当锂电池内部TK所处的位置处的温度低于45℃时,TK内常闭触点闭合,但电池组对电动车马达从供电电动车正常行驶;当环境温度高,或大电流长时间(充)放电等原因,使锂电池组内部温升高达45℃时,TK内常闭触头分离、导致断电,锂电池组E停止(充)放电工作。从而避免了高温可能导致的锂电池爆炸事故。
  当冷却一段时间后,温度降至45℃以下时,TK常闭触头闭合,锂电池组又重新恢复工作。
技术资料出处:stuartlh
该文章仅供学习参考使用,版权归作者所有。
因本网站内容较多,未能及时联系上的作者,请按本网站显示的方式与我们联系。
【】【】【】【】
上一篇:下一篇:
本文已有(0)篇评论
发表技术资料评论,请使用文明用语
字符数不能超过255
暂且没有评论!
12345678910
12345678910
12345678910
真空断路器具有维护工作量小,断流容量大,适宜频繁操作等许多优点,在电力系统中逐渐取代了其它类型的开关,得到了广泛的应用。但是,真空断路器在使用中发生的操作过电压问题,亦引起了人们的注意和担心。因此探讨真空断路器操作过电压产生的原因以及如何防护。  真空断路器的过电压问题在一定程度[][][][][][][][][][]
IC热门型号
IC现货型号
推荐电子百科锂离子电池两大性能指标:能量密度与充放电倍率
接下来的内容,我们将就锂离子电池与能量相关的两个关键指标:能量密度和充放电倍率,展开一些简短的论述。
简析锂离子电池的两大性能指标:能量密度与充放电倍率
能量密度,是单位体积或重量可以存储的能量多少,这个指标当然是越高越好,凡是浓缩的都是精华嘛。充放电倍率,是能量存储和释放的速度,最好是秒速,瞬间存满或释放,召之即来挥之即去。
当然,这些都是理想,实际上受制于各种各样的现实因素,我们既不可能获得无限的能量,也不可能实现能量的瞬间转移。如何不断的突破这些限制,达到更高的等级,就是需要我们去解决的难题。
五、 锂离子电池的能量密度
可以说,能量密度是制约当前锂离子电池发展的最大瓶颈。不管是手机,还是电动汽车,人们都期待电池的能量密度能够达到一个全新的量级,使得产品的续航时间或续航里程不再成为困扰产品的主要因素。
简析锂离子电池的两大性能指标:能量密度与充放电倍率
从铅酸电池、镍镉电池、镍氢电池、再到锂离子电池,能量密度一直在不断的提升。可是提升的速度相对于工业规模的发展速度而言,相对于人类对能量的需求程度而言,显得太慢了。甚至有人戏言,人类的进步都被卡在“电池”这儿了。当然,如果哪一天能够实现全球电力无线传输,到哪儿都能“无线”获得电能(像手机信号一样),那么人类也就不再需要电池了,社会发展自然也就不会卡在电池上面。
针对能量密度成为瓶颈的现状,全球各国都制订了相关的电池产业政策目标,期望引领电池行业在能量密度方面取得显著的突破。中、美、日等国政府或行业组织所制定的2020年目标,基本上都指向300Wh/kg这一数值,相当于在当前的基础上提升接近1倍。2030年的远期目标,则要达到500Wh/kg,甚至700Wh/kg,电池行业必须要有化学体系的重大突破,才有可能实现这一目标。
影响锂离子电池能量密度的因素有很多,就锂离子电池现有的化学体系和结构而言,具体都有哪些明显的限制呢?
前面我们分析过,充当电能载体的,其实就是电池当中的锂元素,其他物质都是“废物”,可是要获得稳定的、持续的、安全的电能载体,这些“废物”又是不可或缺的。举个例子,一块锂离子电池当中,锂元素的质量占比一般也就在1%多一点,其余99%的成分都是不承担能量存储功能的其他物质。爱迪生有句名言,成功是99%的汗水加上1%的天赋,看来这个道理放之四海皆准啊,1%是红花,剩下的99%就是绿叶,少了哪个都不行。
那么要提高能量密度,我们首先想到的就是提高锂元素的比例,同时要让尽可能多的锂离子从正极跑出来,移动到负极,然后还得从负极原数返回正极(不能变少了),周而复始的搬运能量。
1. 提高正极活性物质的占比
提高正极活性物质占比,主要是为了提高锂元素的占比,在同一个电池化学体系中,锂元素的含量上去了(其他条件不变),能量密度也会有相应的提升。所以在一定的体积和重量限制下,我们希望正极活性物质多一些,再多一些。
2. 提高负极活性物质的占比
这个其实是为了配合正极活性物质的增加,需要更多的负极活性物质来容纳游过来的锂离子,存储能量。如果负极活性物质不够,多出来的锂离子会沉积在负极表面,而不是嵌入内部,出现不可逆的化学反应和电池容量衰减。
3. 提高正极材料的比容量(克容量)
正极活性物质的占比是有上限的,不能无限制提升。在正极活性物质总量一定的情况下,只有尽可能多的锂离子从正极脱嵌,参与化学反应,才能提升能量密度。所以我们希望可脱嵌的锂离子相对于正极活性物质的质量占比要高,也就是比容量指标要高。
这就是我们研究和选择不同的正极材料的原因,从钴酸锂到磷酸铁锂,再到三元材料,都是奔着这个目标去的。
前面已经分析过,钴酸锂可以达到137mAh/g,锰酸锂和磷酸铁锂的实际值都在120mAh/g左右,镍钴锰三元则可以达到180mAh/g。如果要再往上提升,就需要研究新的正极材料,并取得产业化进展。
4. 提高负极材料的比容量
相对而言,负极材料的比容量还不是锂离子电池能量密度的主要瓶颈,但是如果进一步提升负极的比容量,则意味着以质量更少的负极材料,就可以容纳更多的锂离子,从而达到提升能量密度的目标。
以石墨类碳材料做负极,理论比容量在372mAh/g,在此基础上研究的硬碳材料和纳米碳材料,则可以将比容量提高到600mAh/g以上。锡基和硅基负极材料,也可以将负极的比容量提升到一个很高的量级,这些都是当前研究的热点方向。
5. 减重瘦身
除了正负极的活性物质之外,电解液、隔离膜、粘结剂、导电剂、集流体、基体、壳体材料等,都是锂离子电池的“死重”,占整个电池重量的比例在40%左右。如果能够减轻这些材料的重量,同时不影响电池的性能,那么同样也可以提升锂离子电池的能量密度。
在这方面做文章,就需要针对电解液、隔离膜、粘结剂、基体和集流体、壳体材料、制造工艺等方面进行详细的研究和分析,从而找出合理的方案。各个方面都改善一些,就可以将电池的能量密度整体提升一个幅度。
从以上的分析可以看出,提升锂离子电池的能量密度是一个系统工程,要从改善制造工艺、提升现有材料性能、以及开发新材料和新化学体系这几个方面入手,寻找短期、中期和长期的解决方案。
六、 锂离子电池的充放电倍率
锂离子电池的充放电倍率,决定了我们可以以多快的速度,将一定的能量存储到电池里面,或者以多快的速度,将电池里面的能量释放出来。当然,这个存储和释放的过程是可控的,是安全的,不会显著影响电池的寿命和其他性能指标。
倍率指标,在电池作为电动工具,尤其是电动交通工具的能量载体时,显得尤为重要。设想一下,如果你开着一辆电动车去办事,半路发现快没电了,找个充电站充电,充了一个小时还没充满,估计要办的事情都耽误了。又或者你的电动汽车在爬一个陡坡,无论怎么踩油门(电门),车子却慢的像乌龟,使不上劲,自己恨不得下来推车。
显然,以上这些场景都是我们不希望看到的,但是却是当前锂离子电池的现状,充电耗时久,放电也不能太猛,否则电池就会很快衰老,甚至有可能发生安全问题。但是在许多的应用场合,我们都需要电池具有大倍率的充放电性能,所以我们又一次卡在了“电池”这儿。为了锂离子电池获得更好的发展,我们有必要搞清楚,都是哪些因素在限制电池的倍率性能。
简析锂离子电池的两大性能指标:能量密度与充放电倍率
锂离子电池的充放电倍率性能,与锂离子在正负极、电解液、以及他们之间界面处的迁移能力直接相关,一切影响锂离子迁移速度的因素(这些影响因子也可等效为电池的内阻),都会影响锂离子电池的充放电倍率性能。此外,电池内部的散热速率,也是影响倍率性能的一个重要因素,如果散热速率慢,大倍率充放电时所积累的热量无法传递出去,会严重影响锂离子电池的安全性和寿命。因此,研究和改善锂离子电池的充放电倍率性能,主要从提高锂离子迁移速度和电池内部的散热速率两个方面着手。
1. 提高正、负极的锂离子扩散能力
锂离子在正/负极活性物质内部的脱嵌和嵌入的速率,也就是锂离子从正/负极活性物质里面跑出来的速度,或者从正/负极表面进入活性物质内部找个位置“安家”的速度到底有多快,这是影响充放电倍率的一个重要因素。
举个例子,全球每年都有会很多的马拉松比赛,虽然大家基本同一时间出发,可是道路宽度有限,参与的却人很多(有时多达上万人),造成相互拥挤,加上参与人员的身体素质参差不齐,比赛的队伍最后会变成一个超长的战线。有人很快到达终点,有人晚到几个小时,有人跑到昏厥,半路就歇菜了。
锂离子在正/负极的扩散和移动,与马拉松比赛基本差不多,跑得慢的,跑得快的都有,加上各自选择的道路长短不一,严重制约了比赛结束的时间(所有人都跑完)。所以呢,我们不希望跑马拉松,最好大家都跑百米,距离足够短,所有人都可以快速达到终点,另外,跑道要足够的宽,不要相互拥挤,道路也不要曲折蜿蜒,直线是最好的,要降低比赛难度。如此一来,裁判一声令响,千军万马一起奔向终点,比赛快速结束,倍率性能优异。
在正极材料处,我们希望极片要足够的薄,也就是活性材料的厚度要小,这样等于缩短了赛跑的距离,所以希望尽可能的提高正极材料压实密度。在活性物质内部,要有足够的孔间隙,给锂离子留出比赛的通道,同时这些“跑道”分布要均匀,不要有的地方有,有的地方没有,这就要优化正极材料的结构,改变粒子之间的距离和结构,做到均匀分布。以上两点,其实是相互矛盾的,提高压实密度,虽然厚度变薄,但是粒子间隙会变小,跑道就会显得拥挤,反之,保持一定的粒子间隙,不利于把材料做薄。所以需要寻找一个平衡点,以达到最佳的锂离子迁移速率。
此外,不同材料的正极物质,对锂离子的扩散系数有显著影响。因此,选择锂离子扩散系数比较高的正极材料,也是改善倍率性能的重要方向。
负极材料的处理思路,与正极材料类似,也是主要从材料的结构、尺寸、厚度等方面着手,减小锂离子在负极材料中的浓度差,改善锂离子在负极材料中的扩散能力。以碳基负极材料为例,近年来针对纳米碳材料的研究(纳米管、纳米线、纳米球等),取代传统的负极层状结构,就可以显著的改善负极材料的比表面积、内部结构和扩散通道,从而大幅度提升负极材料的倍率性能。
2. 提高电解质的离子电导率
锂离子在正/负极材料里面玩的是赛跑,在电解质里面的比赛项目却是游泳。
游泳比赛,如何降低水(电解液)的阻力,就成为速度提升的关键。近年来,游泳运动员普遍穿着鲨鱼服,这种泳衣可以极大的降低水在人体表面形成的阻力,从而提高运动员的比赛成绩,并且成为非常有争议的话题。
锂离子要在正、负极之间来回穿梭,就如同在电解质和电池壳体所构成的“游泳池”里面游泳,电解质的离子电导率如同水的阻力一样,对锂离子游泳的速度有非常大的影响。目前锂离子电池所采用的有机电解质,不管是液体电解质,还是固体电解质,其离子电导率都不是很高。电解质的电阻成为整个电池电阻的重要组成部分,对锂离子电池高倍率性能的影响不容忽视。
除了提高电解质的离子电导率之外,还需要着重关注电解质的化学稳定性和热稳定性。在大倍率充放电时,电池的电化学窗口变化范围非常宽,如果电解质的化学稳定性不好,容易在正极材料表面氧化分解,影响电解质的离子电导率。电解液的热稳定性则对锂离子电池的安全性和循环寿命有非常大的影响,因为电解质受热分解时会产生很多气体,一方面对电池安全构成隐患,另一方面有些气体对负极表面的SEI膜产生破坏作用,影响其循环性能。
因此,选择具有较高的锂离子传导能力、良好的化学稳定性和热稳定性、且与电极材料匹配的电解质是提高锂离子电池倍率性能的一个重要方向。
3. 降低电池的内阻
这里涉及到几种不同的物质和物质之间的界面,它们所形成的电阻值,但都会对离子/电子的传导产生影响。
一般在正极活性物质内部会添加导电剂,从而降低活性物质之间、活性物质与正极基体/集流体的接触电阻,改善正极材料的电导率(离子和电子电导率),提升倍率性能。不同材料不同形状的导电剂,都会对电池的内阻产生影响,进而影响其倍率性能。
正负极的集流体(极耳)是锂离子电池与外界进行电能传递的载体,集流体的电阻值对电池的倍率性能也有很大的影响。因此,通过改变集流体的材质、尺寸大小、引出方式、连接工艺等,都可以改善锂离子电池的倍率性能和循环寿命。
电解质与正负极材料的浸润程度,会影响电解质与电极界面处的接触电阻,从而影响电池的倍率性能。电解质的总量、粘度、杂质含量、正负极材料的孔隙等,都会改变电解质与电极的接触阻抗,是改善倍率性能的重要研究方向。
锂离子电池在第一次循环的过程中,随着锂离子嵌入负极,在负极会形成一层固态电解质(SEI)膜,SEI膜虽然具有良好的离子导电性,但是仍然会对锂离子的扩散有一定的阻碍作用,尤其是大倍率充放电的时候。随着循环次数的增加,SEI膜会不断脱落、剥离、沉积在负极表面,导致负极的内阻逐渐增加,成为影响循环倍率性能的因素。因此,控制SEI膜的变化,也能够改善锂离子电池长期循环过程中的倍率性能。
此外,隔离膜的吸液率和孔隙率也对锂离子的通过性有较大的影响,也会一定程度上影响锂离子电池的倍率性能(相对较小)。
中国储能网版权声明:凡注明来源为“中国储能网:xxx(署名)”,除与中国储能网签署内容授权协议的网站外,其他任何网站或者单位未经允许禁止转载、使用,违者必究。如需使用,请与010-联系;凡本网注明“来源:xxx(非中国储能网)”的作品,均转载与其他媒体,目的在于传播更多信息,但并不意味着中国储能网赞同其观点或证实其描述,文章内容仅供参考。其他媒体如需转载,请与稿件来源方联系,如产生任何问题与本网无关,想了解更多内容,请登录网站:.cn
( 10:04:30)
( 11:44:12)
( 11:44:12)
( 10:46:59)
( 10:21:21)
( 10:19:17)
( 10:17:33)
( 10:10:19)
( 10:07:57)
( 10:06:41)
抗衡亚洲供应商 德国大陆将加大对固态电池技术投资
宁德时代发布招股书,拟募资131.2亿元开发下一代电池
锂电上市公司2017年业绩增幅预告排行榜
动力电池频繁上演“指腹为婚” 到底暴露了什么?
国轩高科:最新开发高能量三元622单体电芯
战略合作联系
投稿邮箱:.cn
广告合作热线:010-
微信公众账号:

我要回帖

更多关于 36v锂电池怎么读 的文章

 

随机推荐