如何更改笔记本安保工作问题和不足问题

凡是在国美购买的家安保工作问題和不足服务在保障期间内遇到无论是正常使用中的问题还是意外事故,即可享受家安保工作问题和不足服务国美家安保工作问题和鈈足内容包括:延长保修、只换不修、屏碎保护、意外保护、服务保障。覆盖家电、手机数码、电脑办公等商品

如有疑问,请与在线客垺 在线客服 联系

当今的笔记本电脑正在向超薄型發展这一设计趋势带给系统工程师的最大设计挑战是超薄电源适配器。如何以一个合理的成本设计出能够装入厚度不足15毫米机壳中的电源如何对它进行有效的散热设计?以及如何使它满足最新的能源之星标准及其它全球性能效标准要克服所有这些挑战并非易事。请看PI技术专家是如何解决这些难题的

对于力求新颖别致的笔记本电脑而言,它应该外形纤薄而且越薄越好。当然它的电源也应如此。但昰要想以合理的成本设计出能够装入厚度不足15毫米机壳中的电源还是极具挑战性的。尽管笔记本电源必须满足所有标准规范但在超薄型适配器中并没有为比较占空间的散热片或散热器预留空间。因此要想降低热量的产生,电源应具有极高的效率并且必须对其进行有效的散热设计。

下文将介绍反激式转换器的一种创新设计方法它通过先进的控制技术来提升所有功率水平的效率并实现超低空载功耗。這种设计可使制造商以与标准“砖块式”相当的成本生产出超薄笔记本适配器同时还能超出ENERGYSTAREPSv2。0功率效率要求和其它全球性能效标准

图1. 典型的反激式转换器

将一个700V功率MOSFET、MOSFET栅极驱动和一个用户可选择限流点的PWM控制器集成到单个IC封装中。在使能状态下控制器的振荡器在每个時钟周期开始时导通功率MOSFET。当电流达到限流点或达到反馈信号设置的占空比(PWM控制)时MOSFET才会关断。PWM控制器关断MOSFET后变压器绕组间的电压開始反向,输出二极管被正向偏置电流开始流入次级绕组,这样会补充输出电容中的电荷并将电流供应给负载

降低严重影响电源效率嘚开关损耗

PWM控制在高功率水平下可提供较高的效率;但当功率水平下降到中低水平时,效率将会随之降低我们可以通过分析开关电源中損耗产生的原因来探究其中的缘由。电源中有两种基本损耗:电流流动产生的阻性损耗以及电路中电感和电容负载产生的开关损耗。阻性损耗是电流均方根(RMS电流)的函数因此,当功率水平较高时阻性损耗就相当大。开关损耗与开关频率成比例因此一般情况下,当功率水平较低时将会出现开关损耗(随频率变化而变化),从而严重限制电源的效率

将开关频率保持在较低水平可以降低开关损耗。鈈过通过提高频率可以减小某些元件(如变压器、输出电容和后级LC滤波器等)的尺寸,这一点对于设计薄型笔记本适配器很有利PI推出嘚TOPSwitch-HX可以解决这一难题。集成在TOPSwitch-HX器件中的700VMOSFET采用特殊制造技术使其能够在132kHz下进行开关,其总体损耗要比以更低频率工作的其它同类MOSFET产品低得哆

利用这种132kHz的开关能力,PI研发出了一种名为SlimCore的薄型变压器骨架这样就可以在薄型笔记本适配器应用中采用低成本的线绕变压器。

利用TOPSwitch來优化所有功率水平下的开关频率和RMS电流

为了克服PWM控制常见的效率限制问题PI在TOPSwitch中采用了包含四种工作模式的多模式PWM引擎,可优化所有功率水平下的开关频率和RMS电流具体说明详见图2。

高负载条件下TOPSwitch-HX控制器在全频PWM模式下工作,这样用户便可以在此高功率情况下使用尺寸較小的元件,同时又可实现高效率随着负载的降低,控制器同时也降低频率从而降低开关损耗,先切换到变频模式然后切换到频率較低的固定频率PWM模式。负载极轻时控制方式将从PWM控制模式开始切换,并运用多周期调制控制算法TOPSwitch-HX会根据经由光耦器馈入到控制引脚的反馈电流情况(见图1),自动在各控制模式间进行切换

在高负载条件下,全频PWM模式可实现高效率开关开关频率选定为132kHz,这样既可减小變压器尺寸同时又能使开关频率保持在150kHz步降开关以下,从而符合传导EMI标准占空比与馈入到控制引脚的控制电流呈线性函数关系并随之減小。

随着输出负载的降低TOPSwitch-HX控制将切换至变频模式(VFM)。在此模式下功率MOSFET峰值漏极电流将保持不变,同时开关频率会从132kHz的初始全频(或66kHz取决于用户的选择)下降到30kHz。占空比随着负载的降低而减小这一过程通过延长开关脉冲之间的关断时间来完成。开关频率的降低导致开關损耗下降并可在负载降低时维持电源效率恒定不变。

适配器如何在低功率时仍能保持高效率

随着电源负载进一步降低和开关频率达到30kHzTOPSwitch-HX将切换至固定低频PWM模式。在此模式下通过调整MOSFET导通时间,可使开关频率保持在音频波段以上并维持输出稳压开关频率保持恒定不变苴占空比减小,工作方式与全频PWM模式相同都通过缩短MOSFET导通时间来实现。峰值漏极电流从初始的最大值下降到最小值即设定流限值的25%。這样可以在低功率时保持高效率避免了音频噪音问题。

TOPSwitch-HX进入其最后的工作模式即多周期调制模式,以支持超低负载要求当峰值漏极電流降到设定流限值的25%时,控制器便会切换到多周期调制模式在此模式下,每当根据回路要求传导能量时功率MOSFET将以30kHz的开关频率开关,苴至少持续135μs这将产生一组至少四到五个的开关脉冲,这些脉冲的峰值初级电流固定为设定流限值的25%不受控制环路的影响。135μs的强制性最小开关时间过后控制器将以逐周期的方式对来自环路的反馈信号作出反应。随后MOSFET关断直至控制引脚电流降到预设值以下。这种工莋模式可使与峰值漏极电流成比例的变压器磁通密度减小继而将变压器发出的音频噪音降至最低。同时还可以避免6kHz到15kHz之间的开关频率瑺采用的反激式转换器磁芯尺寸的自谐振频率通常介于此频率范围内。多周期调制功能可有效地将每个平均开关频率控制在所需的音频范圍内保持输出稳压,同时避免出现前面提到的磁芯自谐振频率因此,与更为传统的突发工作模式不同的是多周期调制能够确保音频噪音得到有效抑制,同时还可提高工作效率

正确地设计会给超薄型笔记本适配器设计师带来空间和散热两大难题的三个参数

上述控制模式为电源设计师提供了内置的设计方法,该方法可在整个功率范围内实现高效率但对设计师而言,仍还有许多工作要做电源设计必须偠安全地应对所有故障情况和最差情况下的元件容差。在以非连续导通模式(DCM)工作的反激式转换器中输出到负载的功率与开关频率、变压器初级电感量以及峰值初级电流平方均成比例。因此这三个参数的微小变化便可导致过载电流远远超出故障条件下的额定输出值。要构建能够经受此类故障条件的电源就必须采用较大的元件,但这却会给薄型笔记本适配器设计师带来空间和散热两大难题PI推出的TOPSwitch-HX已解决叻上述难题:引入额外的电路,并在最终测试中采用参数调整技术以控制开关频率与流限值平方的乘积的最大值和最小值。这在数据手冊中被指定为新参数—功率因数(I2f)

在图3中,对TOPSwitch-HX与上一代的TOPSwitch-GX(无I2f调整)的工作区域进行了比较。去除特性曲线的左下方区域(I2f=081),TOPSwitch-HX可确保在最差情况下提高通过变压器传导的最小能量这样,使用一个初级绕组电感低于先前要求的大约9%的变压器即足以在最差情况下提供指定的输出电流。去除右上方区域(I2f=121)可降低最大过载功率,同样使用一个初级绕组电感低于先前要求的大约9%的变压器也可以实现这一点,从而降低电路中许多元件的最大功率要求在TOPSwitch-HX中引入I2f调整技术,是设计薄型笔记本适配器的关键促成因素该技术可在给定设计中实现鉯下几点:使给定变压器磁芯尺寸提供更多功率输出、过载功率与额定功率的比率大幅降低以及导通损耗更小。

PowerIntegrations已利用集成多模式控制及I2f調整功能的TOPSwitch-HX器件开发出了一套完整的超薄笔记本适配器设计方案,并可立即投产详情请参见发布的参考设计DI-182。135mm的净空高度可容纳整個电源,而制造成本却与双倍尺寸的适配器相当该设计的平均功率效率大于87%,超出了能源之星EPSv20的要求。230VAC输入时电路空载功耗可降到300mW鉯下,远远低于能源之星所允许的500mW空载功耗

有了TOPSwitch-HX,超薄型笔记本适配器不再成为昂贵的选择所有笔记本适配器都可以采用这种方式进荇设计和制造,既节省材料又节约能耗

版权声明:本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或鈈应无偿使用请及时通过电子邮件或电话通知我们,以迅速采取适当措施避免给双方造成不必要的经济损失。

我要回帖

更多关于 安保 的文章

 

随机推荐