微纳金属探针的主要作用3D打印技术应用:AFM探针?

11月13日丨SOL软件的高级使用技巧

结合大量科研实际案例进行实践操作过程的演示教学,包括几何建模注意事项,优化网格划分的方法与技巧,结果后处理与复杂图表的绘制方法,多物理场耦合的方法与技巧,通过函数、变量与自定义方程的使用模拟复杂的问题等,深入学习COMSOL软件的高级操作技巧,并结合学员科研背景进行案例演示,进一步挖掘实操中的常用技巧。

请核对户名:北京中科幻彩动漫科技有限公司济南分公司

社交媒体也已成为科学家分享想法和宣传研究的平台

视频动画注定将取代文章图片

成为新时代科研圈备受追捧的宠儿

近年来,科学动画已经逐渐成为大项目申请、大文章发表、大装置媒体报道和大产品发布的必备展示方式,科学动画,成功科学家的标配;科学动画,助力科学家的成功。

论文补充视频,电视台采访视频,学校网站新闻视频;

大项目申请与答辩,重要学术会议报告;

院士杰青等人才项目申请;

大科学装置展示/物理原理展示/药物机理展示;

与其等待别人到杂志官网去浏览

不如直接让科研成果的动画演示登上央视

中国科研的雄起才能让更多人看到

如果你需要专业的科学动画制作


中科幻彩制作的动画作品

先后登上央视新闻联播

我们有专业的科学动画设计团队

为你提供专业的设计服务









更多动画作品展示请登陆

项目答辩动画与PPT、论文补充动画等业务

7月27日消息,纽约大学阿布扎比分校高级微流体和微设备实验室 (AMMLab) 的一组研究人员开发了一种新型原子力显微镜 (AFM) 探针,它们具有真正的三维形状,他们称之为 3DTIP。

AFM 技术使科学家能够以前所未有的精度观察、测量和操作样品,甚至可以应用于微米和纳米级实体。另外,使用单步 3D 打印工艺制造的新 3DTIP 应用领域比硅基探针更广泛。

图片来源:CC0 公共领域

原子力显微镜 (AFM) 是一种通过在表面上扫描物理探针来表征样品的技术,产生令人印象深刻的分辨率,比光学显微镜所能达到的分辨率高 1,000 倍。AFM 是包括生物医学科学在内的许多学科的基本仪器,其应用范围从表征活细菌和哺乳动物细胞、分析 DNA 分子、实时研究蛋白质以及对分子成像直至亚原子分辨率。

AFM探针由一个末端带有微型尖端的微型悬臂梁组成,是该技术的核心。它通过吸引力和排斥力来感知和感受样品表面,就像我们使用指尖一样,但分辨率低至原子水平。商用 AFM 探针由硅制成,使用微电子行业中典型的传统半导体制造工艺,受到二维设计和冗长的生产步骤的限制。这些当前最先进的探头是刚性的、易碎的,并且只能以某些形状提供。它们不适合探测哺乳动物细胞等软物质。

在发表在Advanced Science杂志上的论文中,研究人员展示了他们用于生产基于双光子聚合 3D 打印的下一代 AFM 探针的专有技术。由此产生的 3DTIP 比基于硅的对应物更柔软,这使得它们更适合 AFM 应用,这些应用涉及与细胞、蛋白质和 DNA 分子的更温和的相互作用。重要的是,3DTIP 的材料特性使其能够实现比类似尺寸的普通硅探针快 100 倍以上的扫描速度。因此,3DTIP 可能会为获取实时捕获蛋白质、DNA 甚至更小分子的生物活性的视频打开大门。

“我们为下一代 AFM 探针开发了一种新技术,采用新材料、改进的设计和生产工艺、新颖的 3D 形状和定制原型,以实现以应用为中心的 AFM 探针的无缝生产周期,”该项目的负责人,纽约大学机械工程和生物工程副教授 Mohammad Qasaimeh 说:“只需一步即可生成具有创新 3D 设计的定制 AFM 探针,这提供了无限的多学科研究机会。”

“我们的 3DTIP 能够使用常见的 AFM 模式以及在空气和液体环境下获得高分辨率、高速 AFM 成像,”该研究的第一作者 AMMLab 和博士后助理 Ayoub Glia 说:“通过聚焦离子束蚀刻和碳纳米管内含物对 3DTIP 的尖端进行精炼,大大扩展了它们在高分辨率 AFM 成像中的功能,达到埃级。”

该研究的作者希望 3DTIP 的多功能功能可以将下一代 AFM 尖端带入常规和高级 AFM 应用,并扩大高速 AFM 成像和生物力测量的领域。

 AFM前瞻性综述:基于3D纳米片和3D打印技术构建柔性全固态超级电容器!

 由于分层三维(3-D)纳米片独特的几何特征和电子结构,它们显示出优异的电子迁移率、超高比表面积和可靠的结构稳定性。因此,三维纳米片在电化学储能领域具有广阔的应用前景。超级电容器具有充放电速度快、循环寿命长、安全稳定等优点,近年来受到广泛关注。柔性化、小型化、智能化是超级电容储能装置的发展方向。新兴的三维打印技术,尤其是墨水直接写入(IDW)模式,极大地提高了器件微结构的设计能力和控制精度。基于我们或其他团队早期对三维石墨烯纳米片和三维MXene纳米片的研究进展,本综述论文提出利用先进的三维打印技术,利用具有高比电容的三维纳米片活性材料,实现柔性全固态超级电容器的设计。系统分析了用三维打印技术设计叉指电极、多层骨架电极和纤维电极的方法,以及柔性超级电容器的性能评价。本综述旨在为未来柔性全固态超级电容器的实际应用提供新的概念和理论指导,为三维打印构建材料的设计、制备和性能优化提供新的思路和理论指导。

 目前,人们对三维纳米片电极材料的设计和超级电容器的应用进行了无休止的评论。最近,还发表了几篇关于3-D打印技术在柔性超级电容器中应用的综述性著作。这些综述分别对三维电极和柔性器件的设计具有积极的指导意义。然而,关于柔性全固态超级电容器中的三维纳米片材料和三维打印技术的联合总结和展望尚不多见。在这篇综述文章中,我们讨论了通过三维打印技术(或一些非打印技术)从三维纳米片(用作微电极的活性砖)构建柔性全固态超级电容器的方法(本综述的概要见图1)。本文的主要内容包括:(1)介绍了三维纳米片材料的基本分类和制备方法,总结了高性能电极材料的一般设计原则;(2) 基于有针对性的设计案例,总结了三维石墨烯、三维MXene等三维纳米片的最新制备和应用进展;(3) 系统总结了基于三维打印技术(或其他技术)的三维纳米片的各种电极(微交叉电极、多层骨架电极、纤维状电极)的设计策略和全固态超级电容器的应用;(4) 最后,我们还讨论了基于三维纳米片的柔性全固态超级电容器的挑战和机遇,为三维纳米片电极材料和高电容柔性超级电容器的未来探索提供了一些启示。

Fig. 1 本综述的概要说明(插图经参考文献许可复制)

我要回帖

更多关于 核酸第三方检测机构 的文章