怎么介绍北京西门子变频器器

西门子变频器相关性质介绍
<META NAME="Keywords" CONTENT="西门子变频器相关性质介绍;
当前位置:首页 && 信息中心 && 正文
西门子变频器相关性质介绍
型号:6SE-0AA0&&&&& 厂商:德国西门子
作为众多知名品牌的合作对象,以其良好的产品品质和服务质量保证了消费者的安全、高效的使用,从而使自己的品牌更具有优势。在使用过程中& ,西门子变频器也会出现一些故障,其一是过流故障,其分为加速、减速以及恒速过电流。是在变频器加减速时间过短、负载发生突变以及负荷分配不均等等原因所引起的。这种情况下,我们可以通过断开负载变频器还是过流故障,说明变频器逆变电路已经完全被损坏了,需要更换新的变频器。其二是过载故障,这种情况的发生是因为加速的时间太短,电网电压太低以及负载太重的情况下发生的。一般可以通过延长加速时间、制动时间等措施来改变。其三是欠压,这就说明西门子变频器的安装存在着很大的问题,需要进行全面的检查后才能正常运行。以上情况的发生应该尽可能的避免,才能在使用过程中保证工作上的效率。当然,这也就需要使用者对西门子变频器有很详尽的了解。
西门子变频器使用过程中需要注意的问题
我们将分为矢量型、节能型、基本型、紧凑型这四种类型。西门子变频器在控制方式上我们做一下讲解:首先要进行速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。最高运行频率:一般的变频器最大频率到60Hz,有的甚至到400 Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。以上就是西门子变频器在整个使用过程中所需要注意的问题!
西门子变频器的作用
简单的说:是按照人的设定要求来改变电机、水泵、空调等设备的转速、流量、功率,从而来达到节能、降耗的作用的。变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交―直―交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率 。目前多数人对于西门子变频器的使用已经到了很专业的地步,我们也相信,在未来的应用过程中,也将逐渐的给我们生活的社会进步带来推动作用。
西门子变频器相关数据分析
相信在我们的生活中享有着非常响亮的声誉,其存在的主要优势在于它能够满足不同用户的特殊要求。而它强大的通讯功能和全面的配套软件,是西门子自动化产品的一大特点。它尤其突显在我们钢铁、机械制造、化工等诸多领域的技术改造和面向自动化控制的飞速发展过程上。随着无传感器矢量控制的推出,MicroMaster Vector和MIDIMASTER Vector的要求也提高了很多,例如在纺织业、工业洗涤机械方面,就有着很重要的发展空间。这个革命性的控制技术能够提供200%的启动起来,而其也不会牺牲掉高速时的性能。这个性能再加上快速优秀的转矩响应时间,使得装置可以用于从前只能使用DC 变频换器的地方。 相信很多消费者对于毫不犹豫选择西门子变频器这种欧诺个态度,就说明了西门子变频器在生活中带给人们的放心。
变频器维修常用检测方法
在变频器日常维护过程中,经常遇到各种各样的问题,如外围线路问题,参数设定不良或机械故障。如果是变频器出现故障,如何去判断是哪一部分问题,在这里略作介绍。
一、静态测试
1、测试整流电路
找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑
表棒分别依到R、S、T,应该有大约几十欧的阻值,且基本平衡。相反将黑表棒接到P
端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复
以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值
三相不平衡,可以说明整流桥故障。B.红表棒接P端时,电阻无穷大,可以断定整流桥
故障或起动电阻出现故障。
2、测试逆变电路
将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基
本相同,反相应该为无穷大。将黑表棒接到N端,重复以上步骤应得到相同结果,否则
可确定逆变模块故障
二、动态测试
在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意
1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机
(炸电容、压敏电阻、模块等)。
2、检查变频器各接播口是否已正确连接,连接是否有松动,连接异常有时可能导致变频器
出现故障,严重时会出现炸机等情况。
3、上电后检测故障显示内容,并初步断定故障及原因。
4、如未显示故障,首先检查参数是否有异常,并将参数复归后,进行空载(不接电机)情况下
启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模
块或驱动板等有故障
5、在输出电压正常(无缺相、三相平衡)的情况下,带载测试。测试时,最好是满负载
7、空载输出电压正常,带载后显示过载或过电流
该种情况一般是由于参数设置不当或驱动电路老化,模块损伤引起。
三、故障判断
1、整流模块损坏
一般是由于电网电压或内部短路引起。在排除内部短路情况下,更换整流桥。在现
场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有污染
的设备等。
2、逆变模块损坏
一般是由于电机或电缆损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波
形良好状态下,更换模块。在现场服务中更换驱动板之后,还必须注意检查马达及连
接电缆。在确定无任何故障下,运行变频器。
3、上电无显示
一般是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻
损坏,也有可能是面板损坏。
4、上电后显示过电压或欠电压
一般由于输入缺相,电路老化及电路板受潮引起。找出其电压检测电路及检测点,
更换损坏的器件。
5、上电后显示过电流或接地短路
一般是由于电流检测电路损坏。如霍尔元件、运放等。
6、启动显示过电流
一般是由于驱动电路或逆变模块损坏引起。
7、空载输出电压正常,带载后显示过载或过电流
该种情况一般是由于参数设置不当或驱动电路老化,模块损伤引起.
我公司的服务有:南京变频器专卖;南京变频器维修;南京施耐德变频器;数控系统维修;江苏变频器;购买变频器;专用机床数控系统;南京西门子变频器;施耐德变频器;变频器销售;abb变频器;三菱变频器;三垦变频器;南京高压变频器;维修变频器;维修数控系统;西门子数控系统;变频器原理;变频器工作原理;安川变频器等,欢迎来电洽谈!热门搜索:
           
          
当前位置: >
两台西门子变频器做主从控制时的参数如何设置?
作者:autozhaopin
来源:中国自动化招聘网
摘要:本文介绍了两台西门子变频器做主从控制时的参数设置。
本例为如何调试两台变频器主从控制。
一个简单的示例如传送带上有两台变频器:一台为主传动,一台为从传动控制。
传送带的速度通过主传动设定 (电机 M1) (如:通过 AIN 1)。主传动选用带编码器的矢量控制,从传动为带编码器的闭环转矩控制。 从传动转矩设定值来自于主传动转矩,需要将主传动模拟量输出连接到从传动的模拟量输入。
基本必备条件
MICROMASTER 440变频器与配置 CU240S(版本3.2以上)的 SINAMICS G120均可。
按说明书调试两台变频器如下:
1. 两台变频分别做快速调试
2. 两台变频分别做电机识别
3. 两台变频器分别做带编码器的调试
4. 主传动模拟量输出端2连接到从传动模拟量输入端2
5. 设定从传动I/O端子板的模拟量输入端子2的拨码开关为ON(0-20mA输入)&
调试之前首先要校对电机速度,方法是采用V/F(见P1300)控制方式,两台变频器运行速度要相同,比较参数r0061和r0021值的大小,电机的转向和大小必须一致(微小的偏差是可以接受的)。如果完成了以上要求, 则改变P1300的值来激活带编码器闭环矢量控制/闭环转矩控制(参考 MM440参数手册, 3.29节控制模式,参数 P节速度编码器,参数P0400;MM440操作说明,3.23.2节)。如果电机旋转方向不正确,应该检查变频器的输出相位和编码器通道,必要时进行改线。&
参数P1820设置为1就可以改变电机转向而不需要重新接电机动力电缆,同时参数P0410设置为1可以改变编码器转向检测(只对SINAMICS G120;参考CU240S参数手册&参数 P0410)。
主传动的参数设置
1. P0771.1 = r0079 模拟量输出2为转矩设定值
为了能将从主机来的负转矩设定值给定到从机(电机的正转与反转),主机模拟量输出需标定如下:
2. P0777.1 = 0 % x1 值 = 0 %
3. P0778.1 = 10 y1 值 = 10 mA
4. P0779.1 = 100 % x2 值 = 100 %
5. P0780.1 = 20 y2 值 = 20 mA&
6. P1300 = 21 带编码器矢量控制
从传动参数需设置如下
7. P0756.1 = 2 模拟输入2 0-20mA
模拟输入的标定:
8. P0757.1 = 10 x1 值 = 10 mA
9. P0758.1 = 0 % y1 值 = 0 %
10. P0759.1 = 20 x2 值 = 20 mA
11. P0760.1 = 100 % y2 值 = 100 %&
12. P1082 = 55 最大频率 (比主传动值高)
13. P1300 = 23 带编码器转矩控制
14. P1503 = r0755.1 模拟输入2作为转矩设定
15. P2000 = 55 基准频率 (比主传动值高)
如果从机故障停机,必须尽可能快得关断主传动。需要将从传动的故障位 r0052.3输出作为主机的OFF2命令或脉冲使能,从机数字输出 (e.g. DOUT1) 应连接到主机的数字输入 (如: DIN4). 将从机的端子19与20连接到主机端子8与9上。
相应的参数需要设置:
P0731.0 = 52.3
P0704 = 99
P0844.0 = 722.3 OFF2 命令
P0852.0 = 722.3 脉冲使能
系统的原理框图
资料来源:本站部份资源来源于互联网,如果无意之中侵犯了您的版权,请来电告知,本站将在1个工作日内删除
求职招聘:如需求职招聘敬请访问“”,中国首家最大的
其它资讯:更多
文章敬请关注“” 或“”
文章标签:&&&&
把文章收藏到:
下一篇:没有了
服务热线: 业务热线: QQ:三菱变频器常见故障分析与处理办法简介_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
三菱变频器常见故障分析与处理办法简介
三&#8203;菱&#8203;变&#8203;频&#8203;器&#8203;常&#8203;见&#8203;故&#8203;障&#8203;分&#8203;析&#8203;与&#8203;处&#8203;理&#8203;办&#8203;法&#8203;简&#8203;介
阅读已结束,如果下载本文需要使用
想免费下载本文?
把文档贴到Blog、BBS或个人站等:
普通尺寸(450*500pix)
较大尺寸(630*500pix)
你可能喜欢扫一扫访问手机站
上海湘润实业有限公司
MOOG伺服阀,西门子微机保护装置,ABB电流互感器,西门子框架断路器,ABB半导体,ULTRAMAT 23气体分析仪,Maxum II色谱仪配件,OXYMAT 61氧分析仪,风机,西门子微机保护装置,液位计等
&您所在位置:首页 & & 上海湘润介绍变频器上怎么使用电流互感器
请输入产品关键字:
地址:上海浦东川沙路5558号绿地东海岸商务大厦B座319室
邮编:201200
联系人:洪秀手机一八九六四七二四九三六,QQ四零八三三九三六零
电话:86-021-传真:86-021-手机:, 1留言:
上海湘润介绍变频器上怎么使用电流互感器
提 供 商:资料大小:5.4MB
文件类型:PDF 文件下载次数:23次
资料类型:未知文件浏览次数:76次
相关产品:
详细介绍:
Current sensorsVoltage sensorsTechnical catalogueShangHai XiangRun INDUSTRY CO.,LTDTEL:+86-21-71993Fax:+86-21-Current sensorsVoltage sensorsContentsTechnologiesCurrent measuring technology ................................................................................................. 4Voltage measuring technology ..................................................................................................& 8Voltage detection technology& .................................................................................................. 10Glossary ................................................................................................................................ 12Industry current sensorsPanorama of industry current sensors ................................................................................... 14NCS type current sensors ....................................................................................................... 18HBO type current sensors.......................................................................................................& 38ES type current sensors .......................................................................................................... 44ESM type current sensors ....................................................................................................... 50MP/EL type current sensors ................................................................................................... 54Substation and traction current sensorsPanorama of substation and traction current sensors ........................................................... 56NCS type current sensors ....................................................................................................... 58CS type current sensors ......................................................................................................... 72Traction voltage sensorsPanorama of voltage sensors ................................................................................................. 80VS type voltage sensors ......................................................................................................... 82EM type voltage sensors& ......................................................................................................... 88Traction voltage detectorsVD type voltage detectors....................................................................................................... 92Other products ........................................................................................................................ 96Common information for industry and traction sensorsInstructions for mounting and wiring ...................................................................................... 98Questionnaire product selection guide ................................................................................. 108Calculation guide for closed loop Hall effect current sensors .............................................. 114Calculation guide for electronic technology current sensors ............................................... 117Calculation guide for closed loop Hall effect voltage sensors ............................................. 118Calculation guide for electronic technology voltage sensors ............................................... 121Our distributors ..................................................................................................................... 1261ShangHai XiangRun INDUSTRY CO.,LTDTEL:+86-21-71993Fax:+86-21-Because yousearch forperformancewe make thedifference.In the industrial and railway sectors,where the tendency for all players is towards higherperformance, ABB current and voltage sensors providecompetitive and adapted solutions. To meet your requirements,they draw on all their qualities to give you the advantage.Resulting from a totally electronic technology, they integratethe latest innovations. More compact, they allow for the optimum&reduction in equipment dimensions. Made from high technology material,&ABB sensors offer exceptional thermal performance, a strongermechanical robustness and generally excellent resistance to harsh&external conditions. These products conform to ecological,&security and strict quality standards.3& Three technologies for meThe secondary output current IS is thereforeexactly proportional to the primary current at&&any moment. It is an exact replica of theprimary current multiplied by the number ofturns NP/NS. This secondary current IS can bepassed through a measuring resistance RM.The measuring voltage VM at the terminals ofthis measuring resistance RM is therefore alsoexactly proportional to the primary current IP.PrincipleABB current sensors based on closed loop Hall effect technology are electronictransformers. They allow for the measurement of direct, alternating and impulsecurrents, with galvanic insulation between the primary and secondary circuits.The primary current IP flowing across the sensor creates a primary magnetic flux.The magnetic circuit channels this magnetic flux. The Hall probe placed in the&&air gap of the magnetic circuit provides a voltage proportional to this flux.&&The electronic circuit amplifies this voltage and converts it into a secondary currentIS. This secondary current multiplied by the number of turns NS of secondarywinding cancels out the primary magnetic flux that created it (contra reaction). The&&formula NP x IP = NS x IS is true at any time. The current sensor measuresinstantaneous values.&Advantages ApplicationsIndustry TractionClosed loop&Hall effect technologyPower supply SensorRMVMG108DGThe main advantages of this closed loopHall effect technology are as follows:L&&&& Galvanic insulation between theprimary and secondary circuits.L Measurement of all waveforms ispossible: direct current, alternatingcurrent, impulse, etc.L& High accuracy over a large frequencyrange (from direct to more than 100kHz).L& High dynamic performance.L& High overload capacities.L& High reliability.Variable speed drives, UninterruptiblePower Suppliers (UPS), active harmonicfilters, battery chargers, wind generators,robotics, conveyers, lifts, cranes, solarinverter, elevator, etc.Main converters, auxiliary converters(lighting, air conditioning), battery chargers,choppers, substations, mining, etc.4asuring currentThe secondary output voltage VS is thereforedirectly proportional to the primary current.It is an exact replica of the primary current,generally with a value of 4V for a nominalcurrent IPN.PrincipleABB current sensors based on open loop Hall effect technology are also electronictransformers. They allow for the measurement of direct, alternating and impulsecurrents, with galvanic insulation between the primary and secondary circuits.The primary current IP flowing across the sensor creates a primary magnetic flux.The magnetic circuit channels this magnetic flux. The Hall probe placed in the airgap of the magnetic circuit provides a voltage VH proportional to this flux, which isitself proportional to the current IP to be measured.The electronic circuit amplifies this Hall voltage (VH) allowing it to be directlyexploited by the operator as a secondary output voltage VS.The current sensor measures instantaneous values.Open loop&Hall effect technologyPower supply SensorG0212DG0VAdvantages ApplicationsIndustryThe main advantages of this open loopHall effect technology are as follows:L&&&& Galvanic insulation between the primaryand secondary circuits.L&&&& Measurement of all waveforms ispossible: direct current, alternatingcurrent, impulse, etc.L Good accuracy over a medium frequencyrange (from direct to several tens&&of kHz).L&&&& High reliability.L& Low power consumption.L& Reduced weight and volume.L& Excellent Performance/Cost ratio.Variable speed drives, backups (&UPS&),active harmonic filters, battery chargers,conveyers, lifts, cranes, solar inverter,etc.Technologies5PrincipleABB current sensors are based on entirely electronic technology. In contrast to closedor open loop Hall effect technology, no magnetic circuit is used in the sensor.They allow for the measurement of direct, alternating and impulse currents withgalvanic insulation between the primary and secondary circuits.The primary current IP flowing across the sensor creates a primary magnetic flux.The different Hall probes included in the sensor measure this magnetic flux. Theelectronic circuit conditions and treats these signals (summation and amplification)to provide two output currents IS1 and IS2 and/or two output voltages VS1 and VS2.All the outputs are exactly proportional to the measured primary current.The current sensor measures instantaneous values.Advantages ApplicationsIndustry SubstationElectronictechnology3RM0VVMPower supply SensorG0215DGThe main advantages of this electronictechnology are as follows:L& Galvanic insulation between theprimary and secondary circuits.L Measurement of all waveforms ispossible: direct current, alternatingcurrent, impulse, etc.L& Choice of output type (current orvoltage, IPN or IPMAX).L& Very large current measuring range (up to40kA) without overheating the sensor.L& High dynamic performance.L& Low power consumption.L& Reduced weight and volume.L& Simplified mechanical fixing.Electrolysis, rectifiers, welding, etc. Substations in continuous voltage.Three technologies formeasuring current62000 A 100 A40 kA 4 kAProduct rangesfor current measurementIndustry applicationsRange Accuracy& Frequency ConsumptionES&&&&ESM&&&&MP-EL&&&&Range Accuracy Frequency ConsumptionHBO&&&&Range Accuracy Frequency ConsumptionNCS&&&&Railway applicationsRange Accuracy Frequency ConsumptionCS&&&&&Range Accuracy Frequency ConsumptionNCS&&&&Closed loopHall effect technologyOpen loopHall effect technologyElectronictechnology2000 A 500 A100 A 5 A600 A 100 A40 kA 4 kA2000 A 300 AClosed loopHall effect technologyElectronictechnologyTechnologiesSubstation applications7Fixed applicationonlyTwo technologies for measPrincipleABB voltage sensors based on closed loop Hall effect technology are also electronictransformers. They allow for the measurement of direct, alternating and impulsevoltages with galvanic insulation between the primary and secondary circuits.The primary voltage UP to be measured is applied directly to the sensor terminals:HT+ (positive high voltage) and HT& (negative high voltage). An input resistanceRE must necessarily be placed in series with the resistance RP of the primarywinding to limit the current IP and therefore the heat dissipated from the sensor.This resistance RE may be either integrated during the manufacturing of the product(calibrated sensor) or added externally by the user to determine the voltage rating(not calibrated sensor).The primary current IP flowing across the primary winding via this resistance REgenerates a primary magnetic flux. The magnetic circuit channels this magnetic flux.The Hall probe placed in the air gap of the magnetic circuit provides a voltage VHproportional to this flux.The electronic circuit amplifies this voltage and converts it into a secondary&&current IS. This secondary current multiplied by the number of turns NS of secondarywinding cancels out the primary magnetic flux that created it (contra reaction).&&The formula NP x IP = NS x IS is true at any time.The voltage sensor measures instantaneous values.The secondary output current IS is therefore exactly proportional to the primaryvoltage at any moment. It is an exact replica of the primary voltage. This secondarycurrent IS is passed through a measuring resistance RM. The measuring voltage VMat the terminals of this measuring resistance RM is therefore also exactly proportionalto the primary voltage UP.Advantages ApplicationsClosed loopHall effect technology1TractionThe main advantages of this closed loopHall effect technology are as follows:L&&&& Galvanic insulation between the primaryand secondary circuits.L&&&& Measurement of all waveforms ispossible: direct voltage, alternatingvoltage, impulse, etc.L&&&& High accuracy.L&&&& High reliability.Main converters, auxiliary converters(lighting, air conditioning), batterychargers, choppers, substations, mining,etc.In the same way as for current sensors, thissecondary current IS can be then passedthrough a measuring resistance RM. Themeasuring voltage VM at the terminals of thismeasuring resistance RM is therefore alsoexactly proportional to the primary voltage UP.The electrical supply to the sensor is alsoinsulated from the primary voltage.PrincipleABB voltage sensors based on electronic technology only use electronic components.In contrast to closed or open loop Hall effect technology, no magnetic circuits orHall effect probes are used in the sensor.This allows for the measurement of direct or alternating voltages with electricalinsulation between the primary and secondary circuits.The primary voltage to be measured is applied directly to the sensor terminals:&&HT+ (positive high voltage) and HT& (negative high voltage or earth). This voltage&&is passed through an insulating amplifier and is then converted to a secondaryoutput current IS. This secondary current IS is electrically insulated from the primary&&voltage to which it is exactly proportional.The voltage sensor measures instantaneous values.TractionApplications AdvantagesElectronictechnology2The main advantages of this fullyelectronic technology are as follows:L&&&& Electrical insulation between the&&primary and secondary circuits.L&&&&&& Measurement of all waveforms ispossible: direct voltage, alternatingvoltage, impulse, etc.L&&&& Excellent immunity to electromagneticfields.L&&&& Excellent accuracy.L&&&& High dynamic performance.L&&&& Excellent reliability.Main converters, auxiliary converters(lighting, air conditioning), battery chargers,choppers, substations, mining, etc.Technologies9G0216DGThe voltage detector indicates the presenceof a voltage higher than a limit& (maximum50V in compliance with standards) by theillumination of a LED. Inversely, the LED isextinguished when the voltage is below this limit.PrincipleABB voltage detector is based on entirely electronic technology. It allowsthe detection of the presence of direct or alternating voltage. For safetyreasons this main function is duplicated within the detector to increase the&&product lifetime.The voltage detector converts the primary voltage UP applied to its terminals to visualinformation for the user. This function permits the user to carryout maintenanceoperations with the assurance that dangerous voltage is not present.The primary voltage UP to be measured is applied directly to the detector terminals:HT1+ and HT2+ (positive high voltage) and HT1& and HT2- (negative high voltageor 0V electric). The electronic circuit (PCB) converts the primary voltage UP to anelectrical signal supplied to a light emitting diode (LED).The information is supplied to the user visually through two flashing LEDs.The detector does not need an external power supply in order to work.ApplicationsTractionAdvantagesElectronictechnology1Voltage detection&technologyThe main advantages of this electronictechnology are as follows:L& Detection of direct and alternatingvoltages.L& Very good visual indication.L& High overload capacities.L& Excellent reliability (functional redundancyin a single product).L& Excellent immunity to magnetic fields.L& Compact product.Main converters, auxiliary converters(lighting, air conditioning), electronic powerdevices integrating capacitors banks,battery chargers, choppers, substations,etc.105000 V 600 VRailway applicationsProduct rangesfor voltage measurementProduct rangesfor voltage detectionRange Accuracy Frequency StandardsEM010&&&&Range Accuracy Frequency StandardsVS&&&&Closed loopHall effect technologyElectronictechnologyRange Safety ReliabilityVD&&ElectronictechnologyRailway applications4200 V 50 V1500 V 50 VTechnologies11GlossaryDescription of the main current and voltagesensor&s characteristicsNominal primary current (IPN) and nominal primary voltage (UPN)This is the maximum current or voltage that the sensor can continuously withstand (i.e. without time limit).The sensor is thermally sized to continuously withstand this value.For alternating currents, this is the r.m.s. value of the sinusoidal current.The value given in the catalogue or in the technical data sheet is a nominal rating value. This figure can be higher if certain conditions&&(temperature, supply voltage&) are less restricting.- Supply voltage:The measuring range increases with the supply voltage.&- Measuring resistance:The measuring range increases when the measuringresistance is reduced.Not measurable overloadThis is the maximum instantaneous current or voltage that the sensor canwithstand without being destroyed or damaged.However the sensor is not able to measure this overload value.This value must be limited in amplitude and duration in order to avoid magnetisingthe magnetic circuit, overheating or straining the electronic components.A sensor can withstand a lower value overload for longer.G0208DGIPmax or UPmaxVAG0209DGIPmax or UPmaxRMG0210DGIPN or UPNNot measurable overloadTimeMeasuring range (IPMAX and UPMAX)This is the maximum current or voltage that the sensor can measure with the Hall effect. In general, mainly for thermal reasons, the sensor&&cannot continuously measure this value for direct currents and voltages.This measuring range is given for specific operating conditions. This can vary depending mainly on the parameters below (see calculationexamples p.114 and onwards):Operating range (IPN, UPN) and temperature (&C)The sensor has been designed for a certain operating temperature. If thistemperature is reduced, then it is possible to use the sensor with a higherthermal current or voltage.G0249DGIPN or UPNT&C12GlossaryDescription of the main current and voltagesensor&s characteristicsSecondary current ISN at IPN or at UPNThis is the sensor&s output current IS when the input is equal to the nominal primary current IPN or to the nominal primary voltage UPN.Measuring resistance RMThis is the resistance connected in the secondary measuring circuit between terminal M of the current or voltage sensor and the 0 V of the supply.The measuring voltage VM at the terminals of this resistance RM is proportional to the sensor&s secondary current IS.It is therefore the image of the sensor&s primary current IP or primary voltage UP.For thermal reasons, a minimum value is sometimes required in certain operating conditions in order to limit overheating of the sensor.The maximum value for this resistance is determined by the measuring range.(see calculation examples p.114 and onwards and the curve IPMAX or UPMAX = f(RM) opposite).AccuracyThis is the maximum error for the sensor output ISN for the nominal input value (current or voltage).This takes into account the residual current, linearity and thermal drift.a.c. accuracy&This is the maximum error for the sensor&s output ISN for an alternating sinusoidal primary current with a frequency of 50 Hz.The residual current is not taken into account. The linearity and thermal drift are always included.No-load consumption currentThis is the sensor&s current consumption when the primary current (or primary voltage) is zero.The total current consumption of the sensor is therefore the no-load consumption current plus the secondary current.All given performance and data included in this catalogue could change.Dedicated data sheets are the only recognized reference documents&for the given performances and data.To have the data-sheets, please contact your local distributor (see page 126-127).Technologies13&& Nominal&& Opening for Secondary& Secondary Supply&&&&Type& primary current& the primary current IS1 voltage VS1 voltage Secondary connection Order code&& (A peak)& conductor (mm)& at &IPN (mA peak)& at &IPN (V peak)& (V d.c.)&&&&&NCS125-4
&10 &15 & &24Straight connector& 1SBT1&&&&&&8 pin&NCS125-4AF
- &15 & &24Shielded cable& 1SBT2&&&&&&6 wires (2m)&NCS125-4VF
- &10 &15 & &24Shielded cable& 1SBT2&&&&&&6 wires (2m)&NCS165-4
&10 &15 & &24Straight connector& 1SBT1&&&&&&8 pin&NCS165-4AF
- &15 & &24Shielded cable& 1SBT2&&&&&&6 wires (2m)&NCS165-4VF
- &10 &15 & &24Shielded cable& 1SBT2&&&&&&6 wires (2m)&NCS125-6
&10 &15 & &24Straight connector& 1SBT1&&&&&&8 pin&NCS125-6AF
- &15 & &24Shielded cable& 1SBT2&&&&&&6 wires (2m)&NCS125-6VF
- &10 &15 & &24Shielded cable& 1SBT2&&&&&&6 wires (2m)&NCS165-6
&10 &15 & &24Straight connector& 1SBT1&&&&&&8 pin&NCS165-6AF
- &15 & &24Shielded cable& 1SBT2&&&&&&6 wires (2m)&NCS165-6VF
- &10 &15 & &24Shielded cable& 1SBT2&&&&&&6 wires (2m)&NCS125-10
&20 &10 &15 & &24Straight connector& 1SBT1&&&&&&8 pin&NCS125-10AF
&20 - &15 & &24Shielded cable& 1SBT2&&&&&&6 wires (2m)&NCS125-10VF
- &10 &15 & &24Shielded cable& 1SBT2&&&&&&6 wires (2m)&NCS165-10
&20 &10 &15 & &24Straight connector& 1SBT1&&&&&&8 pin&NCS165-10AF
&20 - &15 & &24Shielded cable& 1SBT2&&&&&&6 wires (2m)&NCS165-10VF
- &10 &15 & &24Shielded cable& 1SBT2&&&&&&6 wires (2m)&NCS165-20
&20 &10 &15 & &24Straight connector& 1SBT1&&&&&&8 pin&NCS165-20AF
&20 - &15 & &24Shielded cable& 1SBT2&&&&&&6 wires (2m)&NCS165-20VF
- &10 &15 & &24Shielded cable& 1SBT2&&&&&&6 wires (2m)These sensors are designed to be fixed by the case.They may be either vertically or horizontally mounted.The secondary connection is made with a connector or cable.For NCS sensors the primary conductor may be a cable, one or several bars.Frame mountingPanorama of industry current sensors1SBC 14NCS125-4 to NCS125-10NCS165-4 to NCS165-201SBC 14NCS125-4AF to NCS125-10AFNCS125-4VF to NCS125-10VF1SBC 14NCS165-4AF to NCS165-20AFNCS165-4VF to NCS165-20VF1SBC 1414HBO100 to HBO6001SBC7 2These sensors are designed to be fixed by the case.They may be either vertically or horizontally mounted.The secondary connection is made with a connector.For HBO sensors the primary conductor may be a cable or a bar.Frame mountingPanorama of industry current sensors&& Nominal&& Secondary& Supply&&&Type& primary current& voltage voltage Secondary connection Order code&& (A r.m.s.) at IPN (V)& (V d.c.)&&&& HBO100 100 &4 &12 & &15 Molex 4 pin 1SBT1&HBO200 200 &4 &12 & &15 Molex 4 pin 1SBT1&HBO300 300 &4 &12 & &15 Molex 4 pin 1SBT1&HBO400 400 &4 &12 & &15 Molex 4 pin 1SBT1&HBO500 500 &4 &12 & &15 Molex 4 pin 1SBT1&HBO600 600 &4 &12 & &15 Molex 4 pin 1SBT1NCS305-6 to NCS305-20NCS305-6AF to NCS305-20AFNCS305-6VF to NCS305-20VFIndustry sensorsTypeNominalprimary current(A peak)Opening forthe primaryconductor (mm)Secondarycurrent Is1 at &IPN(mA peak)Secondary&voltage Vs1 at &IPN(V peak)Supplyvoltage(V d.c)SecondaryconnectionOrder codeNCS305-6 6 302 &20 &10+15 & +24(&2%)Straight connector8 pin1SBT1NCS305-6AF 6 302 &20 -+15 & +24(&2%)Shielded cable6 wires (2m)1SBT2NCS305-6VF 6 302 - &10+15 & +24(&2%)Shielded cable6 wires (2m)1SBT2NCS305-10 10 302 &20 &10+15 & +24(&2%)Straight connector8 pin1SBT1NCS305-10AF 10 302 &20 -+15 & +24(&2%)Shielded cable6 wires (2m)1SBT2NCS305-10VF 10 302 - &10+15 & +24(&2%)Shielded cable6 wires (2m)1SBT2NCS305-20 20 302 &20 &10+15 & +24(&2%)Straight connector8 pin1SBT1NCS305-20AF 20 302 &20 -+15 & +24(&2%)Shielded cable6 wires (2m)1SBT2NCS305-20VF 20 302 - &10+15 & +24(&2%)Shielded cable6 wires (2m)1SBT215These sensors are designed to be fixed by the case.They may be either horizontally or vertically mounted.The secondary connection is made with a connector or cable.For ES and ESM sensors the primary conductor may be a cable or a bar.Frame mountingES100C1SBC7 2ES300C1SBC7 2ES500C1SBC7 2ES1000C1SBC7 2ES2000C1SBC7 2ESM1000C1SBC7 898 44F0302Panorama of industry current sensors&& Nominal&&&& Secondary& Supply&&&&Type primary current current voltage Secondary connection Order code&& (A r.m.s) at IPN (mA)& (V d.c.)&&&& ES100C 100 100 &12 & &24 Molex 3 pins HE 14 ES100C&ES100F 100 100 &12 & &24 3 wires 200 mm ES100F&ES300C 300 150 &12 & &24 Molex 3 pins HE 14 ES300C&ES300S 300 150 &12 & &24 JST 3 pins ES300S&ES300F 300 150 &12 & &24 3 wires 200 mm ES300F&ES500C 500 100 &12 & &24 Molex 3 pins HE 14 ES500C&ES500S 500 100 &12 & &24 JST 3 pins ES500S&ES500F 500 100 &12 & &24 3 wires 200 mm ES500F&ES500- &12 & &24 Molex 3 pins HE 14 ES500-9672&ES500- &12 & &24 JST 3 pins ES500-9673&ES500- &12 & &24 3 wires 200 mm ES500-9674&ES 200 &12 & &24 Molex 3 pins HE 14 ES1000C&ES 200 &12 & &24 JST 3 pins ES1000S&ES 200 &12 & &24 3 wires 200 mm ES1000F&ES00 250 &12 & &24 Molex 3 pins HE 14 ES&ES00 250 &12 & &24 JST 3 pins ES&ES00 250 &12 & &24 3 wires 200 mm ES&ESM 200 &15 & &24 Molex 3 pins HE 14 1SBT3&ESM 200 &15 & &24 JST 3 pins 1SBT2&ESM 200 &15 & &24 3 wires 200 mm 1SBT1&ESM00 250 &15 & &24 Molex 3 pins HE 14 1SBT8&ESM00 250 &15 & &24 JST 3 pins 1SBT7&ESM00 250 &15 & &24 3 wires 200 mm 1SBT6&ES 400 &15 & &24 Molex 3 pins HE 14 1SBT3&ES 400 &15 & &24 JST 3 pins 1SBT2&ES 400 &15 & &24 3 wires 200 mm 1SBT116MP25P1EL25P1BB to 100P2BB1SBC 14 1SBC7 1EL25P1 to 100P21SBC 14These sensors are designed for PCB mounting.The sensor is mechanically fixed by soldering the secondary circuit pins to the PCB.The primary connection can also be integrated in the sensor (pins for MP sensors,integrated primary bar for EL&BB sensors).The primary conductor for EL sensors can also be a cable or a bar.For MP sensors the primary pin combination determines the sensor&s nominal rating(see table p.55).PCB mountingPanorama of industry current sensors* see table p. 55 &MP25P1: arrangement of primary terminals and related characteristics&.&& Nominal&& Secondary&& Supply&Primary& Secondary&Type primary current current& voltageconnection connectionOrder code&& (A r.m.s.) at IPN (mA)& (V d.c.)&&&&MP25P1& 5 to 25*& 24 or 25* &12 & &15 Pins 3 pins 1SBT1&& Nominal&& Secondary& Supply&Primary& Secondary&Type primary current current voltageconnection connectionOrder code&& (A r.m.s.) at IPN (mA)& (V d.c.)&&& EL25P1 25 25 &12 & &15& 3 pins 1SBT1&EL25P1BB 25 25 &12 & &15 Bar 3 pins 1SBT2&EL50P1 50 50 &12 & &15& 3 pins 1SBT1&EL50P1BB 50 50 &12 & &15 Bar 3 pins 1SBT3& EL55P2 50 25 &12 & &15& 3 pins 1SBT2&EL55P2BB 50 25 &12 & &15 Bar 3 pins 1SBT4&EL100P2 100 50 &12 & &15& 3 pins 1SBT1&EL100P2BB 100 50 &12 & &15 Bar 3 pins 1SBT2Hole&O 7.5 mmHole&O 10 mmHole&O 10 mmHole&O 10 mmIndustry sensors17Designed to be integrated intoevery situationThe NCS125/165 sensor is entirely symmetrical. Its square shape andstrategically positioned oblong holes make it easy to fasten in a choice of2 positions.As an accessory it comes with a side plate that can be fastened on eitherside of the sensor giving complete fitting flexibility. It meets the standarddesign of ABB current sensors. It can be fitted both horizontally andvertically.Industry Current SensorsNCS Range302This flexibility means that NCS125/165 sensor simplifies the work ofintegrators. Additionally the pair of side plate allows the NCS125/165sensor to be fitted to one or several bars at the same time.The NCS305 sensor has been designed to reduce installation costs fornew and retrofit systems. Using our innovative and robust opening, theclip-on system allows the NCS305 to be easily adapted to existing busbars.Thanks to its core free, patented technology, the NCS is more costeffective and faster to install than traditional Hall Effect sensor.The NCS is a &flyweight& with only 5.5 kg (for the NCS305), this sensoroffer the best calibre/weight ratio.18THE NCS MEETS ALL OF YOUR REQUIREMENTSThe chief selling-point of NCS sensors is their quality.Compliance of their high-tech electronic design withstandard EN 50178 is proof of their ability to comply with the most detailedconstraint as well as major demands. The fact that each individual sensoris subjected to rigorous testing is proof of the importance ABB attribute&to quality.QUALITYABB have long been concerned with theprotection of the environment, as proved by theISO 14001 certification they received in 1998. This environmentalapproach is particularly noticeable in the production of the NCSrange in the reduction of the number of components, in the use ofa low-energy manufacturing procedure and the use of recyclablepacking. The products in use are also characterized by their reducedenergy consumption.ECOLOGYQuality that goes beyondstandardsABB have been ISO 9001 certified since 1993 and our standard NCSsensors bear the CE label in Europe.This ongoing striving after quality has always been the hallmark of acompany where excellence and safety are part of the culture, from&design right through to production.This culture is the result of continuous research to make technicalprogress and meet our customers& demands.Considerable&energy savingsNCS sensors offer considerable savings in energy. Indeed only a fewwatts are required to power the NCS sensor in contrast to traditionalsensors that require several hundred watts.This reduction in wasted energy means there is no rise in temperaturearound the sensor.165125100% electronicThe main advantage of the NCS range of sensors is that they aredesigned using a brand-new solution: 100% electronic technology.Unlike other currently available solutions such as shunts and CTs,this approach means that these sensors are very compact. Severalpatents were necessary to achieve this improvement.Industry sensors19NCS industry current sensorsGeneral dataL Plastic case and insulating resin are self-extinguishing.L&& Two fixing modes:L&& Horizontal or vertical with fixing holes in the case moulding.L&& By bar using the intermediate side plate kit (Refer toaccessories and options on the following page).L&& Max tightening torque for M6 screws (side plate mounting): 2 N.mL&& Direction of the current:L&& Output current (IS1 and IS2): A primary current flowing in thedirection of the arrow results in a positive secondary outputcurrent on terminals IS1 and IS2.L&& Output voltage (VS1 and VS2): A primary current flowing in thedirection of the arrow results in a positive secondary output&&voltage on terminals VS1 and VS2.L&& Burn-in test in accordance with FPTC 404304 cycle.Primary connectionHole for primary conductor.The temperature of the primary conductor in contact with thecase must not exceed 100&C.Secondary connectionL Male straight 8 pin connector (integrated in the sensor)&&A female straight 8 pin connector is provided as standard witheach product.L Shielded cable 6 x 2000 mm (cross section 0.5 mm2).UtilisationSensors to measure d.c., a.c. or pulsating currents with agalvanic insulation between primary and secondary circuits.NCS125 4000 ATechnical data1Maximum current IPN generated: 5000A r.m.s.ABB 8 pin connector NCS125-4 - -Output current shielded cable - NCS125-4AF -Output voltage shielded cable - - NCS125-4VFNominal primary current A peak 00Measuring range A peak
20000Not measured overload 1s/h A peak
80000Secondary current IS1 at IPN mA peak &20 &20 -Secondary current IS2 at IPMAX mA peak &20 &20 -Residuel current IS10 @ +25&C &A &&250 &&250 -Residuel current IS20 @ +25&C &A &&180 &&180 -Thermal drift coef?cent (outputs IS1, IS2) &A/&C &&4 &&4 -Measuring resistance& (outputs IS1, IS2) &O 0 ... 350 0 ... 350 -Secondary voltage VS1 at IPN V peak &10 - &10Secondary voltage VS2 at IPMAX V peak &10 - &10Residuel voltage VS10 @ +25&C mV &&100 - &&100&
中国化工仪器网 设计制作,未经允许翻录必究.Copyright(C) 2014 , All rights reserved.
以上信息由企业自行提供,信息内容的真实性、准确性和合法性由相关企业负责,中国化工仪器网对此不承担任何保证责任。

我要回帖

更多关于 变频器 的文章

 

随机推荐